Accuracy analysis of height difference models derived from terrestrial laser scanning point clouds

Philipp Glira (1), Christian Briese (1,2), Norbert Pfeifer (1), Jana Dusik (3), Ludwig Hilger (3), Fabian Neugirg (3), Henning Baewert (4) (3) Physical Geography, Cath. Univessity of Eichstaett-Ingolstadt, Eichstaett, Germany (4) Institutte of Geosciences and Geography, Martin-Luther-University Halle-Wittenberg, Germany

1 Aim of this Study	
In many research areas the temporal development of the earth surface topography is investigated for geomorphological analysis (e.g. landslide monitoring). Terrestrial laser scanning (TLS) is often used for this purpose, as it allows a fast and detailed 3d reconstruction. Earth surface changes are usually investigated on the basis of rasterized data, i.e. digital terrain models (DTM). The difference between two DTMs - the difference model - should correspond to the occurred terrain height changes between the measurement campaigns. Actually, these height differences can be influenced by numerous potential error sources. In this study a method for the error estimation of the difference model is presented. The result is, besides the difference model itself, an error map, which describes the uncertainity of the estimated height differences.	Fig.1: Precision estimation for a difference model.

2 Scan Registration

In order to achieve an optimal registration of the two TLS scans, the orientation process is divided into two steps:	Fig.3: Minimization of point-to-plane distances
1. Indipendent orientation of the scans using the mounted reflectors (Fig.2).	TLS sam
2. Orientation improvement by the Iterative Closest Point (ICP) algorithm minimizing the point-toplane distances Δp (Fig.3) within stable areas (Fig.2).	Fig.4: Histogram of all point$\% 4$ to-plane distances 18 16
Fig. 4 shows the final distribution of the point-to-plane distances for the study area.	

C Parameters for DTM derivation

4 Precision Analysis

The grid height precision $\sigma(z)$ describes the uncertainit of the estimated grid heights and is visualized as e ror map for both DTMs in Block B. In Fig. 7 the influence of the terrain slope (left) and the point cloud density (right) on the resulting $\sigma(z)$ is shown
Fig.7: Correlation between $\sigma(z)$ and terrain slope (fef) \qquad

The aim of this study is the derivation of an error map for the difference model. This is obtained by propagatio of error:
$\sigma(\Delta z)=\sqrt{\sigma\left(z_{1}\right)^{2}+\sigma\left(z_{2}\right)^{2}}$
The error map can be used to judge the reliabilty of the estimated height differences. In a futher processing tep this quality information may be used for removing erroneous cells (e.g. all cells with $\sigma(\Delta z)>5 \mathrm{~cm}$).

Results in Spherical CS
In Fig. 5 results are visualized in the spherical coordinate system of scan 1 . These visualizations show the data seen from the scanners center, i.e. without occiusio Fig. 5 : Visualizations in the spherical coordinate system of scan 1 .

$\begin{array}{l}\text { precision of } \\ \text { difference } \\ \text { model }\end{array}$

5 Conclusion

Digital terrain models (usually) are 2.5 d representations with low point density the grid height estimation is uncertain. This uncertainity can be estimated within the DTM generation process for each cell.
The main result of this study is the error map for the about the reliabilty of the estimated height differences.

