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Abstract

How can choice, con��dence, and response times be modeled simultaneously? Here, we propose the new

dynamical weighted evidence and visibility model (dynWEV), an extension of the drift di��usion model of

decision making, to account for choices, reaction times, and con��dence simultaneously. The decision

process in a binary perceptual task is described as a Wiener process accumulating sensory evidence about

the choice options bounded by two constant thresholds. To account for con��dence judgments, we assume a

period of postdecisional accumulation of sensory evidence and parallel accumulation of information about

the reliability of the present stimulus. We examined model ��ts in two experiments, a motion discrimination

task with random dot kinematograms and a post-masked orientation discrimination task. A comparison

between the dynamical weighted evidence and visibility model, two-stage dynamical signal detection

theory, and several versions of race models of decision making showed that only dynWEV produced

acceptable ��ts of choices, con��dence, and reaction time. This ��nding suggests that con��dence judgments

depend not only on choice evidence but also on a parallel estimate of stimulus discriminability and

postdecisional accumulation of evidence.

Keywords: cognitive modeling, con��dence, decision making, drift di��usion model, sequential

sampling models
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Simultaneous modeling of choice, con��dence, and response time in visual perception

One central aspect of cognitive psychology is the study of decision making. In most situations, the

decision maker can not be entirely sure about whether the choice they made was correct or the best

possible choice. The resulting degree of belief in a correct decision is referred to as con��dence and its

evaluation is an essential metacognitive ability (Pouget et al., 2016).

Modeling in the sense of describing cognitive processes formally and mathematically o��ers many

bene��ts compared to natural language descriptions. Computational models can serve as a link between

behavioral psychology and neuroscience (e.g. Kiani et al., 2014; Philiastides et al., 2006; Rausch et al.,

2020; van den Berg et al., 2016; Zylberberg et al., 2012). Many cognitive models contain parameters that

can be interpreted psychologically and be compared across subjects (Ratcli�� et al., 2001). In addition,

mathematical models o��er the possibility to generate precise quantitative predictions that can be tested

against empirical data. In addition, simulations can reveal new qualitative patterns that can be used for

falsi��cation or as starting point for further research questions (Palminteri et al., 2017).

Static Models of Con��dence

A large number of mathematical models of decision making and con��dence proposed in recent

years were based on Signal Detection Theory (SDT, Aitchison et al., 2015; Mamassian & de Gardelle,

2021; Maniscalco & Lau, 2016; Maniscalco et al., 2016; Rausch et al., 2018; Shekhar & Rahnev, 2021;

Zawadzka et al., 2017). SDT is a general framework for modeling stimulus and observer properties in

various decision tasks (Macmillan & Creelman, 2005). According to SDT, a decision arises from comparing

a normally distributed sample of evidence against a decision criterion. The parameters of the normal

distribution depend on the perceptual abilities of the observer and the nature of the stimulus that has to

be categorized. Several generalizations of SDT were proposed to additionally model con��dence judgments.

These generalizations of SDT were often designed to explain di��erent speci��c empirical patterns. For

example, models with normal (Maniscalco & Lau, 2016) or log-normal noise in the con��dence judgment

(Shekhar & Rahnev, 2021) or the heuristic response congruent model (Maniscalco et al., 2016) explain why

metacognitive accuracy is sometimes lower than expected from decision accuracy. Other models were

designed to be su��ciently ��exible to account for both metacognitive accuracy that is lower than expected

from decision accuracy as well as metacognitive accuracy that is higher than expected from decision

accuracy (Mamassian & de Gardelle, 2021). Finally, some models implement the behavior of an ideal

observer (Aitchison et al., 2015). Most of these static con��dence models predict a speci��c qualitative

pattern of interaction between stimulus discriminability, correctness and con��dence, namely that

con��dence increases with stimulus discriminability for correct responses while it decreases for higher
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stimulus discriminability in incorrect responses (Rausch et al., 2018, 2020). This pattern is referred to as

folded X-pattern (Kepecs & Mainen, 2012) and was observed in several experiments with humans and

animals (Desender et al., 2021; Kepecs et al., 2008; Lak et al., 2017; Moran et al., 2015; Pleskac &

Busemeyer, 2010; Sanders et al., 2016). In other experiments, however, the data was characterized by a

qualitatively di��erent pattern: Con��dence increased with stimulus discriminability also in wrong responses

(Kiani et al., 2014; Rausch et al., 2018, 2020, 2021; van den Berg et al., 2016) resulting in what was

referred to as a double increase pattern (Rausch & Zehetleitner, 2019). This means that all models that

can only produce the folded X-pattern are unsuited as general models of con��dence in perceptual decisions.

The recently proposed weighted evidence and visibility model (WEV) can explain both the folded

X-pattern and the double increase pattern by assuming that observers incorporate visibility of the stimulus

into con��dence judgments. The WEV model showed a superior ��t to data from a masked orientation

discrimination task compared to other static models (Rausch et al., 2018, 2020, 2021).

However, all static models share a substantial drawback. They can only account for response

proportions and con��dence ratings but not response times. The study of the relationship between

con��dence and response times has a long history (Vickers et al., 1985) and reaction times are closely linked

to task di��culty and con��dence in many decision tasks (e.g. Kiani et al., 2014; Rahnev et al., 2020). In

contrast to static models, dynamical models can predict reaction time distributions and response

probabilities by assuming the accumulation of evidence over time (Ratcli�� & Smith, 2004).

Sequential Sampling Models of Con��dence

Dynamical decision models follow the idea that the representation of evidence is not constant but

is accumulated over the time course of a decision (Ratcli��, 1978; Usher & McClelland, 2001). More

speci��cally, many sequential sampling models took the idea from SDT of normally distributed evidence

samples (Ratcli�� & Smith, 2004). Instead of a single observation these models assume an accumulation of

evidence over time, which can be described as sequentially adding normally distributed samples to a

decision variable. Ultimately, a decision is triggered when the decision variable crosses a certain threshold.

This behavior is described in the limit by a continuous Gaussian process by reducing time step size.

Although a Gaussian process is the most common choice, some dynamical models propose a di��erent

process, for example, Poisson counter models (LaBerge, 1994). Based on the idea of stochastic integration

of evidence, several con��dence models have been proposed, for instance the RTCON model (Ratcli�� &

Starns, 2009, 2013), two-stage signal detection theory (Pleskac & Busemeyer, 2010),the bounded

accumulation model by Kiani et al. (2014), or the leaky evidence accumulation models by Pereira et al.

(2021). Sequential sampling models of decision making provide explanations for various empirical patterns

such as the correlation between discriminability and reaction time or the speed-accuracy trade-o�� (Bogacz
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Figure 1

Example for a drift di��usion process
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Note. The process starts at a locat ion that is uniformly dist ributed around z with a range of sz. The drift rate is

normally dist ributed around �� with standard deviat ion s��. The sign of �� depends on the st imulus ident ity, which is

A in this case. The Wiener process evolves with a di usion coe cient set to 1 unt il it hit s either the lower (0) or

upper (a) boundary, at which t ime point a decision for the respect ive alternat ive is init iated. The observable react ion

t ime is the decision t ime t plus a uniformly dist ributed non-decision t ime component , which is uniformly dist ributed

with minimum t0 and range st0.

et al., 2006; Pleskac & Busemeyer, 2010; Vickers et al., 1985).

Sequential sampling models of decision making can be classi��ed into (1) one dimensional di��usion

models and (2) multidimensional race models.

The ��rst class of sequential sampling models assumes one process that evolves in a di��usion-like

manner with either a positive or negative drift depending on the stimulus. Each direction on the dimension

represents support for one of two stimulus alternatives. There are two boundaries, one above and the other

one below the starting point of the process, and when the process hits one of them for the ��rst time, a

decision is triggered for the corresponding alternative. Di��usion models thus apply only to binary choices.

The di��erent models in this class vary with respect to the stochastic process included (Wiener or

Ornstein-Uhlenbeck process) or whether the boundaries are time-constant or collapsing, which is a

widespread assumption in value-based decisions (Milosavljevic et al., 2010; Ratcli�� et al., 2016; Tajima
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et al., 2016; Zhang et al., 2014). The drift di��usion model is characterized by a Wiener process with drift

depending on stimulus discriminability and time-constant boundaries (Fig. 1). This approach is justi��ed by

the interpretation of evidence accumulation as updating a log-likelihood ratio test statistic and of the

decision process as the continuous limit of a sequential probability-ratio test that implements an optimal

policy for a speed-accuracy trade-o�� (Bogacz et al., 2006; Wald & Wolfowitz, 1948; Wald, 1947). In

addition, the drift di��usion model includes a non-decision time component of reaction times that represents

time spent on encoding and producing the motor response (Ratcli�� & McKoon, 2008). Moreover, inter-trial

variations in drift rate, starting point, and non-decision time were added to deal with empirically observed

patterns such as fast or slow errors depending on task di��culty (Ratcli�� & Rouder, 1998; Starns et al.,

2012). Figure 1 visualizes the model and all its parameters.

The drift di��usion model provides an accurate explanation of reaction time distributions in

perceptual as well as memory tasks (Ratcli��, 1978; Ratcli�� et al., 2009, 2016) and in fast as well as very

slow reaction time tasks (Lerche & Voss, 2019). However, the di��usion process always ��nishes at a constant

threshold. Thus, the only signal available for con��dence judgments is decision time (Ratcli��, 1978). To the

best of our knowledge, no study so far has ��t the classical drift di��usion model directly to empirical

con��dence data. Therefore, we investigated how con��dence can be explained by a drift di��usion con��dence

model (DDConf) in which con��dence is assumed to be a decreasing function of decision time. Pleskac and

Busemeyer (2010) suggested a two-stage dynamical signal detection model (2DSD) by adding a

postdecisional period of additional evidence accumulation to a drift di��usion. After this second stage, the

��nal evidence is compared to a set of criteria, as in static models of con��dence (see, e.g. Maniscalco &

Lau, 2016; Rausch et al., 2018).

The second class of sequential sampling models is formed by race models (Gold & Shadlen, 2007).

These models assume one process or dimension for each available alternative and are thus applicable to

multi-alternative decisions. There is, again, a boundary on the processes, and the process that hits its

boundary ��rst determines the decision. Model variants di��er in whether they assume independent or

correlated noise in the di��usion of the di��erent processes (Kiani et al., 2014; Moreno-Bote, 2010; van den

Berg et al., 2016; Zylberberg et al., 2012) and can also include inhibitory interactions or decay (Usher &

McClelland, 2001). According to the balance of evidence hypothesis, con��dence is a function of the

di��erence between the amount of evidence accumulated in the di��erent processes until the time of the

decision (Vickers et al., 1985). However, decision time in��uences con��dence judgments in addition to the

di��erence between the two accumulators (Kiani et al., 2014). Another version of a sequential sampling

model with multiple accumulators, which was constructed to account for con��dence judgments, is the

RTCON model (Ratcli�� & Starns, 2009; Starns et al., 2012). In the present study, we compare
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Figure 2

Dynamical weighted evidence and visibility model

Note. The decision process follows the drift di usion model (top path). After the init ial decision t ime Tdec, there is

a constant t ime period of length �� , in which the evidence process cont inues accumulat ing. In parallel, the visibility

process accrues informat ion about st imulus discriminability (bot tom path). In the end, the nal states of both

processes are read out to calculate the con dence variable and formulate a con dence report .

di��usion-like con��dence models with a set of race models, in which processes accrue evidence for their

respective alternatives with either uncorrelated (�� = 0) or anti-correlated (�� = �� 0.5) noise and opposite

drift directions. Con��dence is either computed according to the balance of evidence hypothesis or as a

function of decision time and state of the losing accumulator at decision time.

Dynamical weighted evidence and visibility model

Here, we present the Dynamical weighted evidence and visibility model (dynWEV), a dynamical

version of the WEV model. It is based on a drift di��usion decision mechanism with postdecisional

accumulation as in 2DSD. But in addition, the dynWEV adopts the idea of WEV by assuming that there is

a second source of information contributing to con��dence. The core idea is that two internal variables

determine con��dence judgments: the evidence about the identity of the stimulus as well as the visibility of

the stimulus (see Fig. 2). Visibility in the context of our model is de��ned as an internal representation of

the discriminability of the stimulus. Visibility is bene��cial for the computation of con��dence because it

allows the observer to put the evidence about the identity of the stimulus into context: When the stimulus

is highly visible, it is reasonable to assume that the evidence about the identity of the stimulus will also be
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Figure 3

E��ect of the weight parameter w on mean con��dence in dynWEV
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Note. Simulat ion of the mean con dence rat ing in correct and incorrect decisions for varying levels of discriminability

with di erent weights on the evidence about st imulus ident ity w (panels). For each level of coherence and each

value of the weight parameter 105 t rials were simulated. The value of the mean drift rate �� forms the x-axis. The

other parameters were set as following: a = 1, z = .5, sz = 0, s�� = 0.5, t0 = 0, st 0 = 0, �� = 1, sV = 1, ��V = 1,

���� 1 1 = ��1 1 = 0, ���� 1 2 = ��1 2 = 0.5, ���� 1 3 = ��1 3 = 1.0, ���� 1 4 = ��1 4 = 1.5.

accurate. Thus, a high degree of con��dence is appropriate. Likewise, when the stimulus is barely visible,

the evidence about the identity of the stimulus is likely also poor and even possibly misleading (Rausch

et al., 2018). From a Bayesian perspective, observers should make use of all information available, that

relates to the uncertainty of the decision. This means, that if internal evidence about the discriminability

is available, which is independent of the evidence about stimulus identity but predictive of decision

accuracy, an optimal observer needs to take this additional information into account in the computation of

con��dence judgments (Rausch & Zehetleitner, 2019).

Visibility in the model is also gathered dynamically over the time course of a trial in a second

accumulation process (Fig. 2). To determine the degree of con��dence, evidence about the identity of the

stimulus and visibility are weighted and combined into one con��dence variable. The weights between the

two processes is expected to depend on the characteristics of the stimulation and the task: Some stimulus

material may allow observers to estimate discriminability with precision. In this case, a substantial weight

on visibility would be expected. In contrast, other stimulus material may leave observers without any cues
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to estimate discriminability, resulting in a considerable weight on evidence about the identity. Simulations

show that whenever there is a considerable weight on the visibility process, dynWEV predicts a double

increase pattern as a function of stimulus discriminability and accuracy of the choice (upper panels in

Fig. 3). The reason for this behavior is that the drift of the visibility accumulator and, thus, its mean ��nal

state is assumed to increase with stimulus discriminability irrespective of the choice. For small weights on

visibility, the model produces the folded X-pattern (lower panels in Fig. 3). Therefore, the dynWEV model

is consistent with both the folded X-pattern as well as the double increase pattern.

The precise formulation of the model can be found in the Analysis section. The postdecisional

accumulation allows for changes-of-mind (Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj et al.,

2009; van den Berg et al., 2016). Particularly in incorrect decisions, the process sometimes tends to the

opposite direction than the initial decision. If the postdecisional evidence strongly contradicts the initial

decision, the observer may change its mind and choose the other alternative.

Rationale of the present study

The aim of the present study was to investigate which model provides the best explanation for the

joint distribution of choice, reaction time, and con��dence. For this purpose, we compared the ��t to

empirical data of the dynWEV model with a drift di��usion con��dence model, 2DSD and several versions of

race models, including independent and anti-correlated processes. We expected that the dynWEV would be

more precise in the prediction of reaction time and con��dence distributions compared to the alternative

models and produce the best ��t when compared in terms of the Bayesian information criterion (BIC,

Schwarz, 1978) and the Akaike information criterion (AIC, Akaike, 1974). We also expected that dynWEV

would be able to reproduce empirical patterns of the relationship between stimulus discriminability,

con��dence, and response time distribution. The reason is that only the dynWEV model includes a separate

accumulation process for visibility, giving the model su��cient ��exibility to account for the relationship

between choice, reaction time, and con��dence.

The race models were included as possible alternatives to dynWEV as they were previously found

to be able to produce a double increase pattern of con��dence as well (Kiani et al., 2014). On the other

hand, 2DSD may only predict a folded X-pattern (Desender et al., 2021). With respect to the relationship

of con��dence and stimulus discriminability, particularly for small inter-trial variation of drift rate, 2DSD is

similar to dual-channel like static models of con��dence, where con��dence is based on an independent or at

least partially independent evidence sample (Mamassian & de Gardelle, 2021; Moran et al., 2015).

To compare the performance of the models in explaining empirical data, we analyzed data from

two visual discrimination tasks with con��dence judgments for which the double increase pattern has been

observed previously (Kiani et al., 2014; Rausch et al., 2018): An orientation discrimination task with
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masked sinusoidal gratings and a motion discrimination task with random dot stimuli. Previous studies

showed that the double increase pattern is a greater challenge to account for in cognitive modeling (Rausch

et al., 2018).

Method

We analyzed data from two visual discrimination tasks with con��dence judgments. Both

experiments involved a within-subject manipulation of stimulus discriminability. The ��rst experiment was

a masked orientation discrimination tasks where stimulus discriminability was manipulated by varying

stimulus-onset-asynchrony. The second experiment was a motion direction discrimination task with

coherence as manipulation of discriminability.

Participant recruitment

Participants were recruited using a derivative of the Online Recruitment System for Economic

Experiments (Greiner, 2015) at the Catholic University Eichstätt-Ingolstadt. Participation was

compensated either with 8€ per hour or with course credits (for undergraduate students). Before the

experiment, participants were informed about the possibility of leaving the experiment without any

negative consequences. They also provided written informed consent for participating in the experiment.

They reported normal or corrected-to-normal vision, no history of neuropsychological or psychiatric

disorders, and also not being on psychoactive medication. All participants were naive to the hypotheses of

the study. The study protocol was approved by the Ethics Committee of the Katholische Universtität

Eichstätt-Ingolstadt.

Apparatus

All experiments were performed in a darkened room on a Display++ LCD monitor (Cambridge

Research Systems, UK) with a screen diagonal of 81.3 cm, set at a resolution of 1,920× 1,080 pixels and a

refresh rate of 120 Hz. The participants were seated at an approximate distance of 60 cm from the

monitor. The experiments were conducted with PsychoPy (Peirce, 2007, 2009) on a Fujitsu ESPRIMO

P756/E90+ desktop computer with Windows 8.1. Participants used a Cyborg V1 joystick (Cyborg

Gaming, UK) for the response.

Experiment 1: Masked orientation discrimination

Participants. We collected data from 16 participants (15 female, 1 male) aged between 18 and 28

(M = 20.4 SD = 2.4) over three sessions.

Stimuli. The target stimulus was a square sinusoidal grating with a size of 3�� × 3�� and one cycle

per degree (maximal luminance: 64 cd/m2; minimal luminance: 21 cd/m2) presented in front of a gray

background (44 cd/m2). The orientation was randomly set, either horizontal or vertical. The mask was a
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checkerboard pattern (size: 4�� × 4�� , ��ve rows and columns) with black (0 cd/m2) and white (88 cd/m 2)

boxes.

Trial Structure and Design. Figure 4A shows the sequence of events in one trial of Experiment

1. All trials started with a white ��xation cross for one second in the center of the screen followed by the

target stimulus with random, horizontal or vertical orientation. After a variable stimulus-onset-asynchrony

(SOA) a mask replaced the target. Five levels of SOA were used: 8.3, 16.7, 33.3, 66.7, and 133.3 ms. After

the mask, which was visible for 500 ms, two scales were presented. The one on the upper part on the

screen was labeled vertical, the one on the lower part horizontal. The left end of both scales additionally

had the label unsure while the right end was labeled sure. Participants had to indicate the perceived

orientation of the grating together with their con��dence using a joystick that moved a mark to the scale of

their choice and the position representing their degree of con��dence. The mark became only visible when

the joystick was moved 50% of the distance towards one of the two choice options so participants were not

biased from the starting point of the index. The participant con��rmed their response by pulling the trigger

of the joystick. Response times were measured as time from stimulus onset until the participant pulled the

trigger. If the choice was incorrect the word Error! was presented for one second. Participants were

instructed to report the orientation of the grating and their con��dence as accurately as possible without

time pressure to keep consistency with previous studies (Rausch et al., 2018, 2020). Instructing participants

to report as accurately as possible was also intended to ensure high quality of con��dence reports.

In each session the participant performed one training block and nine experimental blocks with 60

trials each. In the experimental block, each possible SOA appeared 12 times in a random order. Only the

data from these blocks are used for analysis. With three sessions per participant, this results in a total of

1620 trials per participant. Each session took between 45 and 50 minutes.

Experiment 2: Motion direction discrimination

Participants. We collected the data for the second experiment in two di��erent time periods,

separated by several months. The ��nal sample consists of 42 participants (17 male, 25 female) of age 19 to

54 (M = 23.3 SD = 6.0). In the ��rst data collection period, 30 participants each took part in one session

of the experiment. Four participants conducted more trials because of a technical issue in the beginning of

the experiment. All trials were used for analysis for these participants. Data from six additional

participants, who aborted the experiment before ��nishing all blocks, was not considered in the analyses. In

the second data collection period, eight participants ran through three sessions, two completed two sessions

and two participants completed one session.

Stimuli. In this experiment, the target stimulus were white dots (111 cd/m 2) moving within a

circular patch of 5�� diameter presented on a black background (0 cd/m2). In each frame, there were 262
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Figure 4

Sequence of events in one trial
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Note. Experiment 1 (A) and Experiment 2 (B).

dots with a size of two pixels. The noise dots were drawn at a random location in each frame, the target

dots were moving either up or down at a constant speed of 5�� per second. If they reached the border of the

stimulus region or after 100 frames, the target points were reinitialized at random locations. The

proportion of target points, i.e. the motion coherence, was varied randomly from trial to trial in ��ve levels:

1.6% 3.2% 6.4% 12.8% and 25.6%.

Trial Structure and Design. The sequence of events in one trial of Experiment 2 is shown in

Figure 4B. All trials started with a white ��xation cross presented for one second in the center of the screen

followed by the target. The target stimulus was presented on the screen until a response was given. Motion

coherence was varied between trials. Together with the target stimulus, two horizontal scales were

presented above and below the stimulus, labeled upwards and downwards respectively. The left end of both

scales was labeled unsure while the right end was labeled sure. Participants indicated their perceived

motion direction and con��dence simultaneously with a joystick by moving a mark to the scale

corresponding to their choice and position on the scale corresponding to the degree of their con��dence and

con��rmed their response by pulling the trigger of the joystick. Response times were measured as time
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between stimulus onset and button press of the joystick. If the choice was incorrect the word Error! was

presented for one second after the trial. Participants were instructed to report the direction of motion and

their con��dence as accurately as possible without time pressure to encourage precise con��dence reports and

to keep consistency with a previous study (Kiani et al., 2014).

Each session took about 45 minutes and consisted of one training block and eight experimental

blocks. In each experimental block, each coherence level and motion direction combination was presented

eight times in random order, resulting in 80 trials per block. Thus, depending on the number of sessions,

participants completed 640 to 1920 trials.

Analysis

The free software for statistical computing R was used for all analyses (R Core Team, 2021).

D ata exclusion and preprocessing

Participants were excluded if their overall accuracy was not above chance. Speci��cally, if their

accuracy was below 50% or if the Bayes factor for the comparison against 50% in a binomial model

assuming a logistic prior with a scale factor of 0.5 on the log-odds was less than 3. For the computations

we used the function proportionBF from the BayesFactor package in R (Morey et al., 2018). Moreover, if

the con��dence ratings were equal in at least 90% of the trials the participant was excluded. However, none

of the participants met the exclusion criteria so we analyzed the full sample.

In addition, we excluded trials in which the participantsŠ reaction time was smaller than 300 ms or

grater than the mean plus four times the standard deviation of the participantsŠ individual reaction time

distribution. These criteria were previously used by Pleskac and Busemeyer (2010) and similar exclusion is

common in the literature (e.g. Ratcli�� & Smith, 2004). If the minimal number of trials for each stimulus

identity and discriminability condition was below 20 after the trial level exclusion we intened to drop the

participant from further analyses. However, no participant was excluded from analysis due to fewer

observations. Overall, on average 0.69% and 0.88% of trials were eliminated in Experiment 1 and 2,

respectively.

All mathematical models were constructed to predict discrete con��dence judgments. Therefore, the

con��dence reports on the analogue scale were binned to a ��ve level discrete variable with breaks at 20%,

40%, 60%, and 80% of the continuous scale length, the same number of levels as had been used in previous

studies (Rausch et al., 2018, 2021).

M athemat i cal model for mulat i on

Drift di��usion model. First, we present the drift di��usion model for decision making, which

forms the basis for the drift di��usion con��dence model, the two-stage dynamical signal detection model, as
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well as the dynamical weighted evidence and visibility model.

The drift di��usion model assumes that evidence is accumulated as a Wiener process with constant

drift. There are two time constant decision thresholds, each corresponds to one choice option of the binary

task. At the time the accumulation process reaches one of the thresholds for the ��rst time, the decision for

the respective alternative is triggered. We implemented the drift di��usion based con��dence model

consistent with the standard formulation of the drift di��usion decision model (Ratcli�� et al., 2016) using

the ddiffusion function from the R package rtdists (Singmann et al., 2020). This means, we included

also the inter-trial variability of drift rate, starting point and non-decision time for the motor response in

the decision task. These additional parameters are known to increase the ��t to real reaction time

distributions considerably as without them response time distributions of correct and wrong decisions

would be identical (Ratcli�� et al., 2007). The process describing the evidence accumulation is

X (t) = x0 + W(t)

with starting point x 0, which is drawn from a uniform distribution Uni f [z �� sz
2 z + sz

2 ], and a Wiener

process W with di��usion constant 1 and drift rate µ. The di��usion constant is set to 1 because it acts as a

scaling factor in the model. The drift rate varies across trials according to a normal distribution with mean

drift rate �� and standard deviation s �� , which is denoted as drift rate variation. The mean drift rate ��

depends on stimulus category and discriminability. For binary decision tasks stimulus category may be

represented by S �� { �� 1 1} and determines the sign of ��. The magnitude of �� depends on stimulus

discriminability and therefore varied between experimental conditions, while the other parameters were

kept constant. Thus, there was one parameter ��i for each of the ��ve levels of stimulus discriminability. In a

trial with discriminability level i , the mean drift rate is therefore equal to S�� i . The decision time is

Tdec := min { t|X �� (t) /�� [0 a]} with response R = 1, if X (Tdec) �	 a and R = �� 1, if X (T dec) �
 0.

Drift di��usion con��dence model. According to the drift di��usion con��dence model (DDConf)

the process generating a perceptual decision is identical to the drift di��usion model. In this model the

decision time may serve as a signal for di��culty because the expected decision time decreases with

discriminability. This means that 1
Td ec

may serve as a proxy for signal strength. Indeed, in a Bayesian

decision framework, the optimal con��dence is a function of a��
Td ec

(Moreno-Bote, 2010). As we use

discretized con��dence ratings, we assume a set of thresholds to which the decision time is directly

compared to. This comparison leads to a con��dence rating of C = i , if Tdec �� [�� R i ��R i �� 1 ), with

��1 5 ���� 1 5 = 0 and ��1 0 ���� 1 0 = �� . In accordance with standard models from signal detection theory, we

allow the con��dence thresholds to vary for the two choice options. Finally, in accordance with previous

studies the non-decision time component is assumed to vary uniformly between trials,
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Ter r �� Uni f [t 0 t0 + st 0 ]. The observable response time is the sum of the decision time Tdec and the

non-decision time Ter r . It should be noted that according to DDConf the overlap of response time

distributions between di��erent levels of con��dence is only due to the variation in the non-decision time

component. All in all, for ��ve di��erent levels of discriminability, the model has following parameters

�� = (z sz a ��1 ... ��5 s�� t0 st 0 ��1 1 . . . ��1 4 ���� 1 1 . . . ���� 1 4). An overview of all parameters can be found

in Table 1.

Two-stage dynamical signal detection model. The 2-stage dynamical signal detection model

(2DSD) also assumes a drift di��usion-based decision as the previously described model. In contrast to the

DDConf, 2DSD assumes that the process is not killed at decision time but continues to accumulate

evidence for a ��xed time period �� after the decision. At the end of this postdecisional period the state of

the process is read out and compared to a set of criteria to form a discrete con��dence judgment. Using the

same notation as in the previous section the con��dence variable is mathematically de��ned as

c := X (Tdec + �� ). Similarly to DDConf, the con��dence variable is compared to the set of criteria,

depending on the decision, such that C = i , if c �� [��R i �� 1 ��R i ), with �� 1 0 ���� 1 5 = �� �� and �� 1 5 ���� 1 0 = �� .

As in DDConf, we also included a varying non-decision time component in the 2DSD model. Because

decision and con��dence judgments are reported simultaneously in the present study, we assume that all

processes, encoding, decision, postdecisional accumulation, and response production happen sequentially

and the observable response time is the sum of decision time, postdecisional accumulation period plus the

non-judgment component, i.e. RT = Tdec + �� + Ter r . All in all, 2DSD has one additional parameter ��

compared to DDConf. An overview of all parameters can be found in Table 1.

Dynamical weighted evidence and visibility model. In the present study, we propose a new

sequential sampling model that extends the static WEV model (Rausch et al., 2018, 2020) to take reaction

times into account. The dynamical weighted evidence and visibility model (dynWEV) includes not only

evidence about stimulus identity but also the visibility of the stimulus as an internal measure of the

discriminability in the computation of con��dence. The dynamical WEV model combines this idea with

2DSD (Pleskac & Busemeyer, 2010). This means that for the accumulation of decision-relevant evidence,

we assume a drift di��usion process until a decision is made and a ��xed time period of postdecisional

evidence accumulation in line with the 2DSD model. However, we also assume that there is a second

process accumulating information about the discriminability of the stimulus. This process is denoted

visibility process as its the dynamical equivalence of visibility in the WEV model (Rausch et al., 2018). We

propose this process is again an independent Wiener process V (t) with drift µV and di��usion constant s2
V .

The state of the visibility process is also read out at time Tdec + �� . The internal con��dence variable is a

weighted sum of the form
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Table 1

List and short description of all parameters ��tted for the di��erent models.

Parameter Description Models using the

parameter

��i mean drift rates for drift di��usion (di��usion-based

models) or correct accumulation process (race

models), i = 1 ... 5 (one parameter per stimulus

discriminability)

all

t0 minimal non-decision time all

st 0 range of uniformly distribution for non-decision time all

��R k set of con��dence criteria, R = �� 11 k = 1 ... 4

(con��dence is discretized into ��ve steps)

all

s�� variation in drift rate of the decision process DDConf, 2DSD,

dynWEV, dynVis

a distance between upper and lower decision boundary

for decision process

DDConf, 2DSD,

dynWEV, dynVis

z mean starting point of decision process DDConf, 2DSD,

dynWEV, dynVis

sz range of uniform distribution for starting point in

decision process

DDConf, 2DSD,

dynWEV, dynVis

�� length of inter-rating period 2DSD, dynWEV

w weight on decision evidence for con��dence variable dynWEV

sV variability in visibility process dynWEV, dynVis

��V variation in drift rate of visibility process dynWEV, dynVis

A B thresholds for the two accumulation processes IRM, PCRM,

IRMt, PCRMt

wX wR T and wI n t weights on loosing accumulator, decision time and

interaction for the con��dence variable

IRMt, PCRMt
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c = wRX (Tdec + �� ) + (1 �� w)V (Tdec + �� )

with the weight on the decision evidence w ranging between 0 and 1. This parameter represents the degree

to which con��dence judgments are based on the internal strength of decision relevant (X ) or

decision-irrelevant (V ) stimulus features. Thus, if w = 1, dynWEV is equivalent to 2DSD, as the visibility

process has no in��uence on con��dence. Note, that the decision evidence is multiplied by R, because for a

lower decision R = �� 1, a lower value of X would support the decision while a high value would contradict

the decision. The opposite holds for a upper decision R = 1. The ��nal categorization of the con��dence

variable is equivalent to 2DSD. For the present study, we assume that drift rate of the visibility process

varies with stimulus discriminability in the way that stimuli that are easier to discriminate are also

perceived as more visible. The average drift in the visibility process µV is therefore not a separate

parameter but assumed to be equal to the absolute value of the average drift of the decision process |��|,

such that visibility is independent of stimulus identity, which is represented by the sign of the mean drift

rate in the decision process. In addition, we include drift rate variation in the visibility process ��V similar

to the drift rate variation in the decision process. For the purpose of the present study, we assume that the

drift is normally distributed with mean |��| and standard deviation �� V and that the drift variation in the

visibility process is independent of the drift variation in the decision process (see also Discussion). As in

2DSD there is a uniformly varying non-decision time component Ter r and the observed response time is

assumed to be Tdec + �� + Ter r as all required processes are assumed to occur sequentially before the overt

response. Therefore, dynWEV includes three more parameters, (wsV ��V ), in addition to the parameters

of 2DSD. An overview of all parameters can be found in Table 1. In addition, Figure 5 shows an

illustration of the dynWEV model with all parameters.

Dynamical visibility model. We also included the dynamical visibility model (dynVis), a

restricted version of the dynWEV model without postdecisional accumulation, to test whether

postdecisional accumulation is really necessary to explain con��dence. In this restricted version, �� is set to

0. Because �� = 0 implies that there is no variation in the ��nal state of the evidence process any more,

because it is always at the decision threshold at decision time, we can directly set w = 1 because con��dence

is only explained by variation in the visibility process. DynVis has two additional parameters compared to

DDConf: (sV ��V ). An overview of all parameters can be found in Table 1.

Race Models. In contrast to the drift di��usion model, race models (RM) assume two

accumulation processes, one for each decision alternative. In the present study, following Moreno-Bote

(2010), we model the two processes as Wiener processes, each starting at 0 and having upper boundaries A

and B respectively. Evidence is thus described as two-dimensional Gaussian process X (t) = (X1(t) X 2(t))
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Figure 5

Illustration of the parameters of the dynamical weighted evidence and visibility model
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Note. Left columns shows the accumulat ion processes for decision evidence (top) and evidence about visibility

(bot tom). The decision process follows a drift di usion model with parameters a (boundary separat ion), z (mean

start ing point ), sz (start ing point variat ion), �� (mean drift rate), and s�� (drift rate variat ion). The visibility process

evolves in parallel with mean drift set to the absolute value of the mean drift rate of the decision process (|��|) and an

independent drift rate variability ��V . The visibility process has an addit ional parameter sV for the process variability.

A decision R is t riggered as soon as the decision process reaches the lower or upper threshold, in this case R = �� 1.

This t ime point is denoted Tdec. In this illust rat ion the decision was correct as the threshold and direct ion of mean

drift rate correspond. After the decision both processes cont inue evolving for a xed durat ion �� . Then, a weighted

sum of the nal states is computed depending on the weight parameter w (see right panel). The result ing con dence

variable is compared against a set of criteria depending on the init ial choice. Observable response t imes are Tdec + ��

plus the non-decision t ime component t0 with variat ion st0.

with constant drift µ = (µ 1 µ2) and covariance matrix �
 = �� 2 1 ��
�� 1 . Because �� is just a scaling parameter

in this model, we set it to 1. The parameter �� represents the correlation of the two processes. The sign and

magnitude of drift rates is determined by the stimulus category and discriminability, respectively, similar to

the mean drift rate in drift di��usion-based models. Precisely, µ = (S��i �� S�� i ) for stimulus category

S �� { �� 1 1} and discriminability level i �� { 1 ... 5} . This means that the ��rst accumulator indicates
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evidence in favor of stimulus category 1 and the second for category �� 1. The time of decision is de��ned as

Tdec := min { t | X 1(t) > A ��X 2(t) > B } and the response is 1, if X1(Tdec) > A and -1, if X 2(Tdec) > B . We

also assume a uniformly distributed non-decision component of the reaction time, like in dynWEV and

2DSD.

For the generation of con��dence, we took two possible models into consideration. According to the

Balance of Evidence (BoE) hypothesis, con��dence is a monotone function of the state of the loosing

accumulator (Vickers et al., 1985). This follows the idea that the di��erence in the ��nal amount of evidence

is a clue for perceptual ambiguity. In easy decisions, evidence should exclusively support the chosen

alternative while an ambiguous stimulus produces similar amounts of evidence for all possible choices. In

the race model, the state of the winning accumulator is ��xed at the threshold, so the di��erence indicating

the BoE is completely determined by the state of the loosing accumulator. Yet, previous studies provided

evidence that subjects additionally take the reaction time into account (Kiani et al., 2014). This behavior

seems also plausible, since low intensity stimuli lead not only to a low precision but also to long periods of

accumulation until a threshold is met. In addition, Moreno-Bote (2010) showed that in a Bayesian

framework, the posterior of a correct decision, say for alternative 1, is a function of the ��nal state of the

loosing accumulator divided by the square root of decision time, X2(Tdec)/
��

Tdec. Therefore, we included

the race model with a time-dependent con��dence variable by combining the two indicators and the decision

time as additional indicator in a linear way, such that

c := wX X 2(Tdec) + wR T
1

��
Tdec

+ wI n t X 2(Tdec)
1

��
Tdec

.

The parameters wX , wR T , and wI n t are weight parameters indication how strong the con��dence variable is

in��uenced by the BoE, decision time, or the optimal ratio. Thus, the model may represent and individual

trade-o�� between these indicators for choice accuracy. Similar to the other models, the con��dence variable

is compared against a set of criteria. For the model comparison, we use two di��erent ��xed values for �� as

analytical solutions were available only for �� = 0 and �� = �� .5. We refer to the model characterized by

�� = 0 as independent race model (IRM), and for �� = �� .5 as partially anti-correlated race model (PCRM).

Both are implemented representing the Balance of Evidence hypothesis (i.e. wX = 1 wR T = wI n t = 0) and

with a time-dependent con��dence variable (wX wR T wI n t �� + ), leading to four di��erent variations of the

race models. We denote models implementing the Balance of Evidence hypothesis as IRM and PCRM and

the models with time-dependent con��dence variable as IRMt and PCRMt, respectively. For models with

time-dependent con��dence variable, we set wX + wR T + wI n t = 1. This prevents an arbitrary scaling of the

process parameters, coe��cients and con��dence thresholds and is similar to ��xing one of the coe��cients to 1

(but delivers a more intuitive interpretation of the coe��cients as weights, similar to the weight in
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dynWEV). An overview of all parameters can be found in Table 1 and an illustration of the race models

with all parameters involved is shown in Figure 6.

Figure 6

Illustration of the parameters of the race models model of con��dence
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Note. Race models assume two separate processes, one for each alternat ive (left column). The process accumulat ing

evidence for the correct choice (here top) has a posit ive drift rate. The other process (bot tom) has the same absolute

but negat ive drift rate. Each process has an upper threshold (A and B ). When one of the processes reaches its

threshold a decision is t riggered. In this illust rat ion the decision was correct . At decision t ime Tdec the state of

the losing accumulator (here X 2) is used as measure for the Balance of Evidence. Balance of Evidence as well as

decision t ime are combined in a internal con dence variable depending on the weight parameters wX , wR T , and

wI n t . This con dence variable is compared against a set of thresholds depending on the choice to generate discrete

con dence judgments. This illust rat ion depicts a race model with t ime-dependent con dence measure. Race models

with Balance of Evidence based con dence share the same architecture with only the weight parameters xed to

wX = 1 and wR T = wI n t = 0. Race models may di er whether the di usion noise is independent (IRM) or ant i-

correlated (PCRM), which is not represented in this illust rat ion.

Parameter s and Fi t t i ng Procedure

The various models share many parameters. Table 1 shows an overview and a short description of

all parameters. Both experiments had ��ve steps of stimulus discriminability (i.e. SOA in Exp. 1 and
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con��dence in Exp. 2) and two opposite categories (i.e. horizontal vs. vertical orientation in Exp. 1 and

upwards vs. downwards motion in Exp. 2). Therefore, we modeled the stimulus categories as S �� { �� 11}

and ��tted for each level of discriminability an intensity parameter �� i �	 0 i = 1 ... 5. For the di��usion-based

models (DDConf, 2DSD, dynWEV, and dynVis), the mean drift rate in a speci��c trial is accordingly set to

�� = S��i . In RMs, the drift rate is set to µ = (S�� i �� S�� i ). The choices were denoted similarly as

R �� { �� 1 1} , where the upper bound in di��usion-based models and the ��rst accumulator in RMs drive

decision R = 1 and the lower bound and second accumulator R = �� 1, respectively. Moreover, the

parameters for the non-decision time t0 and st 0 are shared across models. As all models were formulated to

produce discrete con��dence outcomes, we discretized the judgments in the empirical data to get ��ve

con��dence levels. Con��dence thresholds to separate between these levels, ��R k R �� { �� 1 1} k �� { 1 ... 4} ,

may vary between the decision response options and are present in all models. In summary, there are 15

parameters common to all models. DDConf contains four additional parameters: s�� a z sz (19 in total).

2DSD includes the parameter �� in addition to those from the DDConf leading to 20 parameters in total.

DynWEV requires the parameters �� w ��V and sV in addition to DDConf leading to 23 parameters.

DynVis only requires the parameters ��V and sV in addition to the DDConf model and includes 20

parameters in total. IRM and PCRM require only A and B , which are equivalent to a and z in 2DSD and

dynWEV, in addition to the common parameters (17 in total), and IRMt and PCRMt require further w X ,

wR T , and wI n t (19 e��ective parameters in total, because we ��xed the sum of weight parameters to 1).

The parameters were ��tted separately for each participant using a maximum likelihood procedure

assuming independence across trials. This method uses the full information available in the data but has

the drawback of being sensitive to outliers (Ratcli�� & Tuerlinckx, 2002), which is why we excluded

excessively slow and fast responses (see above). Formulas for the likelihood functions of all models are

included in the Supplemental Material. For model m, a set of parameters �� and data vectors, consisting of

stimulus category S, stimulus discriminability Q, observed decisions R, reaction times T and con��dence

ratings C (the dependent variables), we used the negative log-likelihood

L m (��) = ��
NX

n = 1

log(Pm (Rn Tn Cn |�� Sn Qn ))

as loss function, where n = 1... N are the di��erent trials. The derivation of probability densities is

provided in the Supplementary Material. The minimization procedure started with a broad grid search in

which the likelihood is computed for di��erent parameter constellations. After the grid search, the ��ve best

parameter sets were used as initial values for a optimization algorithm. We used the BOBYQA algorithm

for box constrained optimization implemented in the bobyqa function of the minqa package (Bates et al.,

2015; Powell, 2009). Details for the settings of this routine can be found in the code. We restarted the
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optimization four times, using the previously found result as initial value for the next iteration to prevent

the algorithm from getting stuck in a local minimum.

M odel compar i son

For a quantitative comparison of the ��ts of the models, we used the Bayesian information criterion

(BIC) and Akaike information criterion (AIC). The BIC is derived using LaplaceŠs method for

approximating the marginal likelihood in a Bayesian context. Both criteria take the likelihood of the data

as well as the number of parameters into account to avoid over��tting due to unnecessary freedom. Thus,

BIC and AIC implement a trade o�� of parsimony and model ��t (Schwarz, 1978). They are de��ned by

B I Cm = 2L m (�̃�) + k log(N )

and

AI Cm = 2L m (�̃�) + 2k

where k is the number of parameters in the respective model and̃�� is the maximum likelihood parameter

estimation. A low BIC or AIC indicate a better model as the data is captured without introducing

unnecessary complexity in a model.

We computed BIC and AIC for each participant and model. To compare the quantitative ��t of the

dynWEV to that of the other models, we performed Bayesian paired t-tests for the mean di��erence

information criteria assuming a standard Cauchy distribution with scale parameter 1 as prior distribution

for the standardized e��ect size (Rouder et al., 2009). For this purpose we use the function ttestBF from

the BayesFactor package in R. Bayes factors were interpreted with respect to their statistical evidence

according to established guidelines (Lee & Wagenmakers, 2014). Reported 95% equal-tailed CIs were

generated using 106 samples from the posterior distribution using the same prior as for the Bayes factors.

M odel i dent i cat i on analysi s

Because of the possibility that the best ��tting model is not the generative model that underlies the

data, we conducted a model mimicry analysis. Previous studies of sequential sampling models showed that

there are parameter regions where there is a high level of model mimicry when models are ��tted only to

accuracy and reaction time data (Bogacz et al., 2006; Bose et al., 2020). Because of the high complexity of

the models used in this study, it is not possible to ��nd parameter regions a priori where speci��c models are

equivalent, besides the trivial exception that dynWEV is equivalent to 2DSD if the weight on the visibility

accumulator is 0, i.e. w = 1 and dynVis is a special case of dynWEV. Therefore, we relied on simulating

arti��cial data, ��tting and comparing the resulting information criteria to examine whether the generative
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model also achieves the best quantitative model ��t. We generated simulations from the overall second best

��tting model using the ��tted parameters and the same number of trials as in the empirical data. With this

method we replicated the situation of the experiments as accurately as possible. Then, we ��tted the best

and second-best ��tting model to the simulations and compared which model is preferred by comparing the

BIC.

Parameter recover y analysi s

To access whether our experimental procedure and ��tting methods allowed us to robustly recover

the parameters of the dynWEV model, we conducted a parameter recovery study. For this purpose, we

simulated one arti��cial data set per participant using the parameter sets obtained from the model ��tted to

empirical data. The number of observations for each simulated data set was equal to the number of trials

for the respective participant in the actual experiments. We then ��tted the dynWEV model again

individually to the simulated data sets and compared the true underlying parameters with the ��tted

parameters.

Transparency and openness

Model speci��cation for 2DSD, dynWEV, and the race models and analyses for all experiments were

preregistered at the Open Science Framework website (https://osf.io/mtr4j, Hellmann & Rausch, 2022).

The parameter recovery study was conducted after the ��rst submission of the manuscript. Experiment

��les, raw data, and code are publicly available via GitHub at

https://github.com/SeHellmann/SeqSamplingCon��denceModels.

Results

Experiment 1: Masked orientation discrimination

All participants were included in the analysis. The maximum proportion of trials excluded for each

participant was 1.05%.

B ehavioral results

Accuracy did not vary between sessions B F = .11. Accuracy was at chance level at the minimal

SOA of 8.3 ms (M = 50.4%, SD = 2.9%) and close-to-perfect (M = 99.6%, SD = .6%) at the maximum

SOA of 133.3 ms (Fig. 7A). Mean con��dence increased in correct responses from 14.7% (SD = 8.63%) of

the visual scale for the shortest SOA to 92.2% (SD = 2.39%) for the highest SOA. Similarly, con��dence

increased also in error trials from the hardest condition (M = 13.7%, SD = 8.13%) to the easiest condition

(M = 59.3%, SD = 3.08%, Fig. 7B). Response times also increased in incorrect responses from low

discriminability (M = 2.44 s, SD = 0.13 s) to high discriminability (M = 3.08 s, SD = 0.63 s). In spite of

that, reaction times varied only slightly for correct trials ranging from 2.40 s (SD = 0.11 s) in the lowest
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SOA to 2.39 s (SD = 0.28 s) in the highest SOA (Fig. 7C). There was only a weak relationship between

con��dence and response times with a mean Gamma correlation across participants of �� .05 (SD = .27, see

Fig. 7D).

Figure 7

Descriptive results from Experiment 1

A

0.5

0.6

0.7

0.8

0.9

1.0

8.3 16.7 33.3 66.7 133.3
Stimulus-onset-asynchrony [ms]

A
cc

ur
ac

y
B

0

20

40

60

80

100

8.3 16.7 33.3 66.7 133.3
Stimulus-onset-asynchrony [ms]

M
ea

n 
co

nf
id

en
ce

C

2.4

2.6

2.8

3.0

3.2

8.3 16.7 33.3 66.7 133.3
Stimulus-onset-asynchrony [ms]

M
ea

n 
re

sp
on

se
 ti

m
e 

[s
]

D

2.3

2.4

2.5

2.6

2.7

0-20 20-4040-6060-8080-100
Confidence

M
ea

n 
re

sp
on

se
 ti

m
e 

[s
]

Correct Wrong

Note. Mean accuracy (A), con dence rat ings (in % of visual scale, B), and response t imes (C) for di erent levels of

st imulus onset asynchrony (SOA) and mean response t imes for di erent levels of con dence (in % of visual scale, D).

Error bars represent within-subject standard errors.

M odel results

Summary statistics of the ��tted parameters for all models can be found in Supplementary Table 3.

There was a strong correlation between the parameter �� , assessing the postdecisional accumulation time in

the dynWEV and 2DSD models, and metacognitive sensitivity, i.e. the degree to which con��dence

judgments di��erentiated between correct and incorrect trials (see Supplementary Fig. 1).

Visual inspection of empirical data and model predictions. Most models ��tted accuracy

for the di��erent levels of SOA well (Suppl. Fig. 2). The DDConf model showed the most prominent

deviations from empirical data, predicting a too ��at curve and higher accuracy for lower levels of SOA than

observed. The other di��usion based models, i.e. 2DSD, dynWEV, and dynVis slightly underestimated

accuracy for easier conditions. Figure 8 shows the observed and ��tted patterns of mean con��dence

judgments for di��erent discriminability levels and correctness of the response in Experiment 1. The
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Figure 8

Observed mean con��dence vs. con��dence predicted by model ��ts for Experiment 1
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Note. Empirical (points) and t ted (lines) mean con dence rat ings as funct ion of st imulus onset asynchrony for

correct (green, circles) and incorrect (orange, t riangles) decisions. Error bars around points and shaded areas around

lines represent within-subject standard errors. Ribbons around lines are barely visible because of small intervals.

DDConf model missed the changes in con��dence with SOA almost completely. As expected, 2DSD and the

race models without time dependent con��dence (IRM and PCRM) were not able to account for the double

increase pattern. Indeed, only the dynWEV and dynVis models were able to reproduce the increase of

con��dence with discriminability in incorrect trials. Although the prediction of the dynWEV model was
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accurate in general, it underestimated the increase in con��dence in incorrect trials. It should be noted that

the number of errors for the two highest SOA levels was only 1.5% (see Figure 7A). Therefore, the

likelihood as objective function put a smaller weight on these points, which is why predictions may be less

accurate in this region. The dynVis model on the other hand overestimated the con��dence for the di��cult

conditions, where many trials were available for both correct and wrong decisions. The race models with

time dependent con��dence (IRMt and PCRMt) both produced constant con��dence in incorrect decisions

and on the other hand underestimated the steepness of the correct response curve. The deviation of race

models from the empirical con��dence reports is particularly visible in the joint distribution of con��dence

and correctness (Suppl. Fig. 4). Supplementary Figure 4 also shows that all models except for dynWEV

failed to account for the data in the same way: For di��cult stimuli, the probability of high con��dence

reports was systematically overestimated and the prevalence of low con��dence was underestimated whereas

the opposite is true for the easiest two conditions.

To visualize reaction times as a function of con��dence, Figure 9 shows log-transformed response

time quantiles for di��erent levels of con��dence. The most striking discrepancies between empirical and

predicted RT distributions is apparent for DDConf, which produced very broad distributions. These broad

distributions are explained by the high values in variation of the non-decision time component necessary

for accounting for the strong overlap of response time distributions between con��dence ratings. The best ��t

to reaction time was achieved by 2DSD. The BoE race models did not account well for the reaction time at

high con��dence responses, while all the other models struggled with the reaction at high con��dence

speci��cally in incorrect trials. However, high con��dence errors represent only 1.2% of observations.

Model comparison in terms of information criteria. We compared the model ��ts for AIC

and BIC. In terms of BIC, dynWEV was preferable over the other seven models and achieved the smallest

value for all participants (see also Suppl. Fig. 6). The second best model was 2DSD (mean BIC di��erence

to dynWEV: M �� = 256, SD�� = 120). DynVis also performed better than all race models (mean BIC

di��erence to dynWEV: M �� = 630, SD�� = 244). Among the race models IRMt performed best (M�� = 892,

SD�� = 245). The worst model was DDConf with M �� = 5783, SD�� = 1717. The BIC was smaller for the

dynWEV model compared to all other models for all participants. A Bayesian t-test was conducted to

compare the BIC values for the dynWEV model with the other models. For the comparison with the 2DSD

the Bayes factor revealed decisive evidence in favor of dynWEV (B F10 = 5.2 × 104, CI of posterior for

�� : [1.13 2.92]). The results for the other comparisons were more extreme (B F10 > 105, see

Supplementary Table 1 for more details). The dynWEV model outperformed the other models by an even

larger margin in terms of AIC, as the BIC has a higher penalty for the parameters and therefore dynWEV

gets the higher penalty in the BIC.
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Figure 9

Observed response time quantiles vs. quantiles predicted by model ��ts for Experiment 1
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Note. Empirical (t riangles and points) and t ted (lines) response t ime quant iles (log scaled; probabilit ies: .1, .3, .5,

.7, .9) across con dence judgments for incorrect (left column) and correct (right column) answers. Empirical quant iles

were computed from the whole data set without regarding for part icipants. Predicted quant iles were computed after

aggregat ing the individual response t ime densit ies.

Experiment 2

For analysis the samples from the two data collection periods were combined to one sample but

model results were very similar for the two subsets. All of the participants who had ��nished the

experiment, performed above chance overall. From the individual number of trials a maximum proportion

of 1.6% was excluded because of extreme response times. All participants were included in the analyses.

B ehavioral results

Accuracy ranged from 57.6% (SD = 9.0%) for minimal motion coherence to 99.3% (SD = 1.6%)

for the maximal motion coherence (Fig. 10A). Again, mean con��dence increased in both correct and

incorrect responses from 41.6% (SD = 7.28%) and 38.7% (SD = 9.25%), respectively of the visual scale at

1.6% coherence to 93.5% (SD = 18.4%) and 87.1% (SD = 19.2%), respectively at 25.6% coherence

(Fig. 10B). In the second experiment response times decreased in correct trials from a mean 3.38 s

(SD = 0.44 s) in the hardest condition to 2.31 s (SD = 0.81 s) in the easiest condition. Here, mean

response times decreased also for errors from 3.451 s (SD = 0.54 s) for the lowest coherence level to 2.14 s

(SD = 0.51 s) for the highest coherence (Fig. 10C). There was medium to strong relationship between

con��dence and response times with a mean Gamma correlation across participants of -.36 (SD = .27, see

Fig. 10D).

M odel results

Summary statistics of the ��tted parameters for all models can be found in Supplementary Table 4.

There was a strong correlation between the parameter �� in dynWEV and 2DSD and metacognitive

sensitivity (see Supplementary Fig. 1).

Visual inspection of empirical data and model predictions. In Experiment 2 all models

��tted the shape of the accuracy curve as a function of coherence accurately with the exception of dynVis,

which overestimated the steepness of the curve by underestimating accuracy in di��cult conditions

(Suppl. Fig. 3). Similarly to Experiment 1, dynWEV seemed to best approximate mean con��dence

judgments across conditions (Fig. 11), while 2DSD and race models based on balance of evidence missed

the increase in con��dence with stimulus discriminability in wrong decisions completely. DynVis and

DDConf showed the double-increase pattern but overestimated con��dence in di��cult situation and showed

almost no di��erence in con��dence between correct and incorrect decisions. Although showing a slight
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Figure 10

Descriptive results from Experiment 2
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Note. Mean accuracy (A), con dence rat ings (in % of visual scale, B), and response t imes (C) for di erent levels of

st imulus onset asynchrony (SOA) and mean response t imes for di erent levels of con dence (in % of visual scale, D).

Error bars represent within-subject standard errors.

increase, IRMt and PCRMt underestimated the slope of con��dence in incorrect trials as a function of

coherence. Wrong decisions in the easiest condition (25.6% coherence) form 0.1% of all observations.

Therefore, mean con��dence in incorrect decisions for the highest coherence did not strongly in��uence

model ��tting. With respect to the discrete empirical response distribution, the deviation was most

apparent in the most extreme conditions and extreme con��dence reports. All models except for dynWEV

tended to underestimate the proportion of high con��dence in easy conditions while for hard conditions they

overestimated the proportion of high con��dence trials (see Suppl. Fig. 5). For low con��dence, the opposite

was the case. These deviations were most pronounced in DDConf and race models. Concerning response

times, dynWEV and 2DSD were more accurate in ��tting response time quantiles than all other models

(Fig. 12). DDConf produced again a very ��at RT distribution, which does not capture the distribution of

the data. Race models with time dependent con��dence (IRMt and PCRMt) overestimated response times,

especially in low con��dence trials, but they captured the overall pattern of the relationship between

response time and con��dence, that is higher con��dence was linked to faster decisions and particularly a

shorter tail of the distribution as indexed by the upper quantiles. Time-independent con��dence race
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models as well as dynVis seem to have missed this pattern as decision time increases for extreme high and

extreme low con��dence. It can also be seen that dynWEV and 2DSD, the two models based on the drift

di��usion process, tended to overestimate the tail in high con��dence errors, but high con��dence errors form

only 2.7% of the data.

Figure 11

Observed mean con��dence vs. con��dence predicted by model ��ts for Experiment 2
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Figure 12

Observed response time quantiles vs. quantiles predicted by model ��ts for Experiment 2
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Note. Empirical (t riangles and points) and t ted (lines) response t ime quant iles (log scaled; probabilit ies: .1, .3, .5,

.7, .9) across con dence judgments for incorrect (left column) and correct (right column) answers. Empirical quant iles

were computed from the whole data set without regarding for part icipants. Predicted quant iles were computed after

aggregat ing the individual response t ime densit ies.

Model comparison in terms of information criteria. Similar to Experiment 1, we only

report BIC results, here, as the comparison using AIC delivers similar results. The BIC favored dynWEV

above the other models for 27 of the total 42 participants (Suppl. Fig. 7). For the other participants, in 10

cases 2DSD, in one case dynVis, and in 4 cases PCRMt delivered the best ��t. In terms of the mean BIC,

dynWEV obtained the best ��t and 2DSD the second best ��t (M�� = 28, SD�� = 35) followed by dynVis

(M �� = 269, SD�� = 230). Among the race models the ones with time-dependent con��dence variable, IRMt

(M �� = 170, SD�� = 135) and PCRMt (M �� = 191, SD�� = 179), performed best. The Bayesian t-test

comparison revealed decisive evidence for dynWEV compared to 2DSD (B F10 = 3.35 × 103, posterior

CI�� = [0.44 1.13]) with even more extreme results for the other comparisons (B F10 �	 105). Supplementary

Table 2 shows the results for the comparison to the other models.

When analyzing the data separately for the two data collection periods Bayes factors also

indicated at least strong evidence in favor of dynWEV. For the ��rst data collection period, which included

30 participants, the Bayes factor for the comparison of dynWEV with 2DSD was 14.46 (posterior

CI�� = [0.20 0.97]) and for the comparison with all other models at least 2.35 × 105. For the second

collection period with 12 participants and di��erent number of sessions, the comparison of dynWEV to

PCRMt resulted in the lowest Bayes factor (B F10 = 45.06, posterior CI�� = [0.43 1.96]) still indicating very

strong evidence for dynWEV. The comparison with the other models delivered again decisive evidence in

favor of dynWEV (B F 10 > 1.14 × 102).

Model identi��cation analysis

In both experiments dynWEV was the best and 2DSD was the second best performing model in

terms of BIC and AIC. Thus, we simulated one arti��cial data set for each participant using the ��tted

parameters and number of observed trials. Then, we ��tted the generative model and dynWEV to the

simulated data and compared the model ��t using the BIC. In this situation model mimicry is obvious as

the 2DSD is a special case of dynWEV when the weight on the evidence accumulator w is equal to 1.

However, for none of the 58 participants of both experiments the dynWEV performed better than 2DSD, if

the data was generated by 2DSD. More precisely, in dynWEV the ��tted weight parameter w was close to 1

for most participants (M = .96, SD = .09), which means that dynWEV would also prefer a single-process

architecture if it is the best explanation.
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A second mimicry analyses was performed to investigate whether one of the race models was

falsely classi��ed, we performed another model identi��cation analysis with PCRMt as generative model. We

chose to include PCRMt as a generative model into model identi��cation analysis because PCRMt was the

best performing model among the di��erent ��avors of the race model according to Bayes factors. For none

of the 58 simulated data sets dynWEV achieved a lower BIC compared to PCRMt. Moreover, the

maximum likelihood achieved by the ��ts was higher for PCRMt compared to dynWEV for all arti��cial

participants, indicating that dynWEV is not able to produce the same or similar joint distributions of

decisions, response times and con��dence. Thus, the models seem to be identi��able by the ��tting procedure

in the present study.

Parameter recovery analysis

In addition to the model identi��cation analysis we conducted a parameter recovery analysis for

dynWEV to test how accurate the parameter can be estimated with the experimental data and ��tting

procedure. We observed a high correlation between true and observed parameters for most parameters,

indicating that parameter recovery was rather robust (Suppl. Fig. 10). Among the parameters that also

feature in the standard di��usion model, the lowest correlation coe��cients of .7 were observed for sz and t0.

The only two parameters for which parameter recovery was suboptimal were the variance parameters of the

visibility process ��V (�� = .11) and sV (�� = .27). These two parameters are closely linked in the

mathematical formulae.

Discussion

The modeling analysis revealed a better ��t of the dynWEV model compared to other dynamical

models of decision con��dence in both the masked orientation discrimination task and the random dot

motion task. Speci��cally, only dynWEV and 2DSD, two models assuming that the choice is based on a

drift di��usion process, were able to accurately ��t the response time distributions as a function of di��erent

levels of con��dence, while even the best performing race models using time-dependent con��dence variables

lacked accuracy in the explanation of response times. However, only dynWEV but not 2DSD was able to

account for the increase in con��dence with stimulus discriminability in both correct and incorrect decisions.

Implications of the dynWEV model

The accurate ��t of the dynWEV model has some theoretical implications how human observers

compute con��dence judgments.

Close relationship between decision dynamics and con��dence. First, the dynWEV model

demonstrates that dynamical decision models can be extended to accurately describe the distribution of

choices, con��dence and response times at the same time. Moreover, this study demonstrates that a single
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model is able to account for experiments where the response time distributions are similar across di��erent

levels of con��dence as in Experiment 1 as well as experiments where the distributions change as a function

of con��dence as in Experiment 2. We speculate that the strength of relationship between con��dence and

reaction time may vary between stimulus types used in discrimination tasks. Static stimuli lead to a weaker

relationship and dynamic stimuli like RDKs induce stronger relationships (Kiani et al., 2014; Rollwage

et al., 2020; van den Berg et al., 2016; Zylberberg et al., 2012). Dynamical con��dence models have already

been successfully applied to static stimuli (Pleskac & Busemeyer, 2010). It is important to note here that

even when the relationship between con��dence and response time is weak, there is a lot of information in

the data to identify models by the relationship of con��dence and discriminability (see Fig. 8 and 11) and

between discriminability and response time (see Suppl. Fig. 8 and 9). Because con��dence is related to the

decision dynamics, any changes of parameters describing the decision process also a��ect con��dence. The

two best-��tting models, 2DSD and dynWEV generally provided a good ��t to response times as a function

of con��dence by assuming that con��dence is generated by a similar dynamic process as the decision itself.

In spite of that, in contrast to previous studies, the winning models do not imply a direct causal connection

between con��dence and decision time (cf. Kiani et al., 2014). Given there is converging evidence that

con��dence and reaction times are related (e.g. Kiani et al., 2014; Rahnev et al., 2020), it seems

problematic to model con��dence ignoring reaction times as many static models of con��dence do. Previous

studies aiming to extend dynamical models to account for con��dence often did not use the rich information

provided by the joint distribution of choices, con��dence, and response times to estimate parameters and

examine model ��t. For example, previous studies ��tted only response times (Kiani et al., 2014), used

aggregated data, like decision probabilities and average response times (van den Berg et al., 2016), used

only the quantiles of the reaction time distribution (Pleskac & Busemeyer, 2010; Ratcli�� & Starns, 2013),

or ��tted ��rst the drift di��usion model parameters to the choice and response time data, and used the

con��dence data only to ��t the con��dence-speci��c parameters (Desender et al., 2021; Moran et al., 2015).

Postdecisional accumulation of evidence. Second, the present study supports previous

��ndings that con��dence is informed by additional evidence about the choice alternatives that is not

involved in the decision process (Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj et al., 2009; van

den Berg et al., 2016), because the two best-��tting models, 2DSD and dynWEV share the assumption of a

postdecisional period of evidence accumulation. A period of postdecisional accumulation is absolutely

necessary in 2DSD to account for variation in con��dence judgments. But also for dynWEV, the ��tted

parameters indicate that there is a prolonged period of postdecisional accumulation. The postdecisional

period constitutes on average 67.4% of the overall response times in Experiment 1 and 46.3% in

Experiment 2 (see also Suppl. Table 3 and Suppl. Table 4 for summaries of parameter ��ts). In addition,
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dynVis, which is identical to dynWEV except it omits postdecisional accumulation, did not ��t the data

well. In previous studies modeling postdecisional accumulation, it was generally assumed that

postdecisional accumulation of evidence occurs during the time window between the response to the task

and the con��dence judgments (Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj et al., 2009).

However, in the present study, participants responded to the task and reported their degree of con��dence

at the same time. Nevertheless, postdecisional accumulation provided a far better account of con��dence

than models that lacked postdecisional accumulation. Moreover, in both experiments estimates of

postdecisional accumulation time were strongly correlated with metacognitive sensitivity. In line with a

contribution of postdecisional accumulation, experimentally increasing the time between a perceptual

decision and a con��dence judgment improves metacognitive sensitivity (Moran et al., 2015; Yu et al.,

2015). Moreover, some but not all electrophysiological markers of perceptual con��dence are not found until

after the response (Boldt & Yeung, 2015; Rausch et al., 2020). Therefore, postdecisional evidence

accumulation may be necessary for the computation of con��dence in perceptual decisions in humans.

Parallel estimation of stimulus discriminability. Third, the accurate ��t of the dynWEV

provides strong evidence that evidence about stimulus discriminability is involved in the computation of

con��dence (Rausch et al., 2018, 2020). Information about stimulus discriminability is at least in parts

accumulated independently of decision evidence. In the masked orientation discrimination task of

Experiment 1 visibility may be informed by the perceived size, form, or presentation time of the stimulus.

Concerning the random dot kinematograms in Experiment 2, this means there is information available

from the random dot stimulus that is predictive of stimulus discriminability but is not predictive of the

choice. For example, the precision of the representation of motion orientation is predictive of stimulus

discriminability i.e. coherence, but orientation is not predictive of direction of motion. Thus, the dynWEV

model is consistent with probabilistic theories of perception, according to which observers take into account

knowledge about the uncertainty associated with observations (Ma, 2012). A possible neural mechanism

may involve posterior parietal cortex and ventral striatum, which were found to track sensory reliability

independently of the choice (Bang & Fleming, 2018). Evidence about stimulus reliability seems to be an

adequate explanation for the double increase pattern observed in previous studies (Kiani et al., 2014;

Rausch et al., 2018, 2020). A previous study had proposed that the double increase pattern can be

explained by a combination of balance-of-evidence and decision time (Kiani et al., 2014). However, in the

present study no race model with time dependent evidence was able to reproduce the double increase

pattern of con��dence, although con��dence was computed as a combination of terms including Balance of

Evidence and decision time and therefore these models are in principle able to produce a double increase

pattern (e.g. if con��dence was solely a function of decision time, i.e. with
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wR T = 1 wX = 0 and wI n t = 0). The additional constraints put on the parameters by ��tting the whole

joint distribution of decisions, response times, and con��dence reports are likely to cause the discrepancies

between empirical and predicted mean con��dence (Figures 8 and 11). This again emphasizes the necessity

of ��tting the joint distribution of choice, response time and con��dence to identify the complete cognitive

architecture underlying perceptual decisions.

Speci��cation of the dynWEV model. It should be noted that the dynWEV model presented

here is only one possibility to formulate a dynamical version of a weighted evidence and visibility model of

con��dence. There were some choices made in the concrete formulation that were somehow arbitrary. Most

importantly, we included trial-to-trial variation of the drift rate of the visibility accumulation. Variability

of drift rate in the visibility process seems plausible since e��ects similar to the ones causing the drift

variation in decision evidence accumulation should also be present in the visibility accumulation. However,

although dynWEV implies that the variations of drift rates in the decision process and in the visibility

process are independent, it might be assumed that these variations of drift rates in the decision and

visibility process are in fact correlated. The plausibility of independent drift rate variability depends on the

origin and nature of drift rate variation. In the drift di��usion model, variation in drift rates is often used to

account for large reaction times in incorrect responses and to ensure a ��nite asymptote of accuracy when

the boundary separation increases arbitrarily (Ratcli�� & Rouder, 1998; Starns et al., 2012). It was

previously proposed that the variability in the drift rate arises from noise in visual and memory encoding

of the stimuli and the variation in accumulation from the actual comparison process, for example in a

word-matching task (Ratcli��, 1981) or an orientation discrimination task (Smith et al., 2004). This

interpretation would support correlated drift rates in visibility and evidence accumulation. On the other

hand, there are some arguments for an independent variation. First, in an object identi��cation task, drift

rate variability in the di��usion model seems to arise from late processing of the task relevant features of the

stimulus and seems to be part of the neural process of decision making (Ratcli�� et al., 2009). In addition,

there is evidence that di��erent stimulus features are processed independently and in parallel in the visual

system if stimulus are presented brie��y (Kyllingsbaek & Bundesen, 2007), which supports our approach as

the visibility process incorporates task-irrelevant and thus di��erent features than the decision accumulator.

Besides the drift rate variation there is the possibility that the di��usion noise is not independent as in our

formulation but that process noise is shared between the accumulation processes. To substantiate the

model speci��cation future research may try to independently manipulate speci��c parameters of dynWEV

through experimental conditions (Voss et al., 2004).
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Limitations and open questions

Although there is strong evidence in favor of dynWEV compared to all other models presented

here, there are some limitations of the present study and open questions, which should be pointed out here.

Response times in high con��dence errors. First, despite of providing the best ��t to response

times of all models tested, the dynWEV model still overestimates response times for high con��dence errors

(see Fig. 9 and 12). Although these observations form a rather small proportion of observations, the

pattern is apparent in both experiments. In previous studies, the pattern of response times for high

con��dence errors was not consistent and may be in��uenced by stimulus properties and task setting like

instruction (Ratcli�� & Starns, 2009; Starns et al., 2012). Future studies will require an extraordinary

number of trials to investigate how these di��erences in response times for high con��dence errors are

explained by the properties of the decision process.

Modeling con��dence response times and changes of mind. Second, for 2DSD and

dynWEV, we assumed a constant duration of the postdecisional accumulation period. However, a ��xed

duration of postdecisional accumulation seems too restrictive. Thus, the models presented in the present

study may be improved by including a mechanism that produces probabilistic postdecisional accumulation

times (e.g. Moran et al., 2015). An experimental paradigm in which choice and con��dence are reported

subsequently would allow to explicitly model con��dence response times as well as changes of mind. The

modeling of con��dence response time distributions may deliver further insight into the dynamics involved

in the generation of a con��dence judgment by postdecisional accumulation. However, to ��t more

sophisticated models may require using simulation-based techniques. In addition, it is not at all clear that

postdecisional accumulation starts not until the initial choice response was made, such that simply

separating the responses physically does not solve the research question when in time the postdecisional

accumulation begins. The postdecisional accumulation period allows 2DSD and dynWEV in principle to

account for changes of mind. However, the way how the models are formulated in the present study implies

that participants stick to their decision during the postdecisional accumulation period and that

contradicting evidence may only lead to low con��dence. Under which conditions changes of mind arise is

still an open research question. With respect to the dynWEV model, additional research is necessary to

investigate the role of the visibility process in changes of mind. In addition, it is possible that changes of

mind occur but are not observable in the present paradigm. Finally, by incorporating con��dence response

times and changes of mind as an additional variable in the models, a direct comparison with the race

models presented in this study would not be possible. Future studies are necessary to generalize the

existing race models with postdecisional accumulation.
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Metacognitive Sensitivity. Third, the present study may also have implications for the large

research program relying on measurements of metacognitive accuracy. A large number of di��erent

measures of metacognitive accuracy exist, some of which are model free, such as Goodman and KruskalŠs

Gamma (Nelson, 1984) and the area under type-2 ROC curve (Fleming et al., 2010). However, there are

also measures of metacognitive accuracy that rely on speci��c con��dence models to disentangle between

metacognitive accuracy and subjective criteria, for example meta-dŠ/dŠ (Maniscalco & Lau, 2012), ��m et a

(Shekhar & Rahnev, 2021), con��dence e��ciency (Mamassian & de Gardelle, 2021), or metacognitive noise

(Guggenmos, 2022). Future studies are needed to investigate how these measures of metacognitive

accuracy are related to the parameters of the dynWEV model (or other dynamical models of con��dence) to

see if measures of metacognitive accuracy are incomplete or even biased due to not accounting for dynamic

accumulation processes.

Other sequential sampling models of con��dence. In addition, we restricted the comparison

of models in this study to models for which solutions to likelihood functions are available and did not

include models for which we would have to approximate the likelihood by sampling. Thus, models such as

RTCON (Starns et al., 2012) and the bounded accumulation model proposed by Kiani et al. (2014) were

not considered in the present study. Finally, we also did not consider other decision architectures except for

the drift di��usion model and the race model such as the leaky competing accumulator model (Usher &

McClelland, 2001).

Multiple alternative decisions. The dynWEV model shares a drawback with all drift di��usion

based models, namely it applies to binary decisions. Though the excellent ��t in experimental paradigms

that often use binary decisions di��usion models lack some external validity since real world decisions most

often include multiple if not a continuous scale of possible alternatives. Race models may be applied to

multiple alternatives in a straightforward way since every alternative has its accumulator but perform worse

in ��tting response time distributions. One possible explanation of the better ��t of di��usion models is the

inter-trial variations that make is very ��exible. Indeed, most of these additional parameters are included to

gather all empirical patterns of response times (Ratcli�� & Rouder, 1998; Ratcli�� et al., 2016). Inter-trial

variability in stating point (s z ) should allow for fast errors while variation in drift rate (s �� ) makes small

errors possible. It may be possible that race models can achieve equally good ��ts when provided with this

additional freedom. Furthermore, the visibility accumulation may be also incorporated in such a model,

which would be a possible alternative candidate for the dynWEV model presented in this study.

Magnitude Sensitivity. Finally, while dynWEV is applicable to a broad range of psychophysical

tasks, there is one empirical phenomenon that can not be explained by the current version of the model:

magnitude sensitivity. Magnitude sensitivity describes the e��ect of faster decisions in decision tasks when
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the stimulus magnitude (e.g. illumination or numerosity in a respective task) or value (e.g. reward in

points) is increased for all available alternatives (Pirrone et al., 2021). This e��ect is well studied in

detection tasks (Pins & Bonnet, 1996; van Maanen et al., 2012) and can be observed in various value-based

and perceptual decision tasks in humans and animals (Ratcli�� et al., 2018; Teodorescu et al., 2016; van

Maanen et al., 2012) even if both alternatives are equal in magnitude (Kirkpatrick et al., 2021; Pirrone,

Azab, et al., 2018; Pirrone, Wen, & Li, 2018). Recent studies examined di��erent possible sequential

sampling accounts for this e��ect. Drift di��usion models with intensity dependent noise parameters and

leaky competing accumulator models both deliver explanations for the data but clear evidence in favor of a

speci��c model is missing (Ratcli�� et al., 2018; Teodorescu et al., 2016), as there is a high degree of model

mimicry (Bogacz et al., 2006; Bose et al., 2020).

A similar e��ect as magnitude sensitivity has been reported with con��dence reports. By separately

manipulating signal strength and signal to noise ratios, it is possible to manipulate con��dence without

a��ecting accuracy (Koizumi et al., 2015; Odegaard et al., 2018; Samaha et al., 2016). Given that the e��ects

of magnitude sensitivity can be explained by the dynamics of decision making, it seems necessary to

investigate if the e��ects on con��dence can be explained by these dynamics as well. The present study

shows that the cognitive modeling of the joint distribution of choice, response time and con��dence is a

powerful tool for model comparison.

Conclusion

We proposed a sequential sampling model, the dynamical weighted evidence and visibility model,

to account for the joint distribution of decisions, response times, and con��dence judgments in binary

perceptual decision tasks. In two di��erent perceptual decision tasks with simultaneous con��dence reports,

the model ��tted the empirical data better than ��ve alternative models and captured all relevant

relationships between decision, response time and con��dence judgment. These observations indicate that

con��dence is not exclusively based on evidence utilized in the decision process, but incorporates also

postdecisional evidence as well as independent evidence about the reliability of the stimulus. Moreover, we

demonstrated that using the all the information available in the data in form of the full joint distribution

of all dependent variables is both feasible and advantageous for model ��tting and comparison.
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