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Introduction SIMPLIFIED WORKFLOW It has often been reported that the distribution of volumes of gravitational mass movements follow a simple power law:
When it comes to transport power, debris flow are among the geomorphologically most potent processes in high mountain areas. In addition The TLS scans were referenced in the scanner-own reference system using reflectors fixed in stable rock areas. Afterwards, all scans were transformed  (FOR EACH OF THE 153 DEBRIS FLOWS)
’ ° ’ . . . . .
they often constitute an important process coupling slope and channel systems. In order to be able to quantify the contribution of these episo- to the IocaI'UTM system.(EPSG: 25832) by :applylng the reflector coor(?lnjmates obtained via DC?PS and total station. _ Automatic sorting and spliting of p(x) = ax® (e.g. Bennett et al. 2012)
dic processes to the sediment budge of a catchment, the magnitude-frequency relationship of debris flows of the area needs to be determined. Together with all ALS points, the TLS data (in total, there are several billion measurement points made available for the project) were stored and ma- mapped debris flow polygons into
The volume of debris flows can be measured using the so-called direct morphological method from multitemporal, high-resolution digital ele- nagedina Postgres / PostGIS (_jatabase (R|eg etal. 2913)- _ _ _ . ‘ years, geomorphic zones and possib- We fitted this and, as a comparison, a Iog-normal distribution to our data using the maximum liklihood method of (c.f. Clauset et
vation models. Both, Study area-wide airborne LiDAR data from different timesteps and georeferenced terrestrial LIDAR data have been made All processing steps on the point level were aCCOmp|IShEd using different ready'made algorlthms available in the software paCkage LIS (http//WWWIa' le budgeting methods al., 2009) nght now, the Iog-normal distribution looks more promising, but further work on the subject will be undertaken.
available. From single digital elevation models, volumes can be estimated by reconstructing the pre-event surface. For early time periods (pre serdata.at). All processing steps on the grid level were accomplished using a combination of SAGA GIS (Conrad, 2006) and R’s spatial extentsion packa- I . wdaed .
2006), only the debris flow deposition area can be mapped from orthophotos of comparatively many orthophotos (aerial images from eight dif- ges (Brenning, 2009; Hijmans, 2013; Pebesma et al., 2014). Automat. generation of gej}#ts‘ E)‘(am?les f((j)r SOrT:je of the 153devents and df'ﬁeregtdg#anhﬁcat'fon Stafrteg"esd !
ferent points in time (1953-2006) had been orthorectified). Using empirical area-volume-relationships, the debris flow volumes could be esti- areas of interes (buffering of ) differencing of ALS-data and reconstructed pre-event surface b) differencing of georeferenced ALS-data
mated. We present results from the quantification of debris flow from all three named workflows. Maooi ¢ debris fl tent debris flow deposition zones) Postovent P J Dittecssct s (Lsiereod | oo R Sontcant dneencs By o s
apping or depris 1iow_extents o ca. 293 tons .
- . . . Export of ALS and TLS dat
Studv area A geomorphological map of the study area, corresponding to the state of September 2009, was prepared at a scale of 1:6000. Field data, literature xportoTA>and 1h> data
2ludy aread . i . o . i . . . for each AOI from the spatial
The Kauner valley is located in the Otztaler Alpen (Austrian central alps). It is a tributary of the Inn river and is drained by the Fagge brook. Crys- consideration, orthorectifed aerial images of different temporal volumes and multiple DEM-derived land surface parameters like slope, aspect, height oretac ) r:m detsza ’
talline rocks (silicious para- and orthogneisses). The landscape is dominated by glacial landforms. The two main glaciers of the valley are deteri- above channel network or local percentile and a moving-window based delineation of rock wall sections were used facilitate the mapping process. T
orating rapidly in terms of volume and length (Abermann et al. 2009). (" Filtering of the point clouds- ) — e R ——
sure e wove 1o . So based on point neighbourhood A - i A = [ et ettt
TR . 2 ‘j Bud. etln . - ) ) Luﬁbild?r,}L‘JAV—]?ild:r, statistics (esp. outlier detection o5 % & w0 Height difference between pre-event
Yica emmingen 4 - Sediment transport by debris flows can be quantified using multi-temporal ferrestrsche Aufnahe and removal) m-dp::‘m"é::rﬂ:ﬁ'n:‘;wmwmnm
e high-resolution DEMs (,,the so-called morphological method“). The disposition areas of o) ® ) 7 g Debris flow Nr. 1 (1953-1969) W
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% (i 7 156 debris flow events were mapped on orthorectified historical aerial images and raw First classification based on - N
DTMs of difference (DoDs) representing 10 different time periods. Raster- und Vldordaten GDAL color attributes (TLS data only) ' '
K . . i . von Dritten / _Tools (cf.. Haas et al. 2008) Debris flow Nr. 69 (July 2012 - Sept. 2012)
: Then, four different workflows were used to arrive at the debris flow volume, depending — GIS Analyee \ B J ’ '
3 :;)( ' on the data available for the respective mapped debris flows: gres  Posigis Datenbank s,i‘é;fiis ("~ Classification: Rule-based )
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§ 3 8 § & 8 Py * ALS: The topographic data used in this study were acquired in two ALS flight Later, for each disposition area of the debris flows in categories a)-c) (#90), DEMs were constructed for each time steps using the method of moving 1 ° “c8- 20110924-20100825
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campaigns. The first campaign was conducted in September 2006, the second planes which also returns grids of the standard deviation of the residuals resulting from the plane fitting for each timestep (o, and o,). These were (" Calculation of significant ) S v . -
in September 2012. Whl!e the first mission Vl_9|ded a point density of ~ 2 pt / used to arrive at a grid of cellwise propagated error (o) following the methodology described in Taylor (1997): DoDs and volumes with spatial- E Sg.
m?, the second resulted in ~ 10 pt / m?. The first campaign was conducted by ly distributed &tfors and proba: 3 S &
the Tyrolean State and the second was flown specificly for the PROSA project s s bilisticly determined threshold 1 S ﬁg :
using the Riegl LMS-Q680i ( = 1550 nm) sensor. 72 fight strips were adjusted oc = (07 +03) . (Wheaton 2008) ) 5 £° L - . . T T
. . . = T T T T T (=)}
and georeferenced using mountain hut roofs as tie surfaces (Kager, 2004). A 0 10 500 n ° a0 i _“““”t _ 30"“[ 3 G
) Volume [m?] animetric area [m
o ) o _ T-values for each cell were calculated to relate the raw cell difference to the
e TLS: AImO.St 40 monitoring Statl.ons have been regularily visited since summer propagated error: cell borders Abb.: Cumulative empiral distributions of the 153 Abb.: Flachen-Volumen scatterplot fiir 153 Mur- Total debris flow volume 1953-
2012. Until fall 2013, the Z-420i TLS model was used, later, the VZ-4000 of the T Cell, the value of which iski)mergd?ted debris flow volumes with power law and log-nor- ginge im Untersuchungsgebiet 2012: atleast 29,300tons
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® Scanpositionen ISl oip 1 4 e/ The about 90 reflectors distributed at most TLS monitoring positions were le- ol + 03 5 Lm0 T T N
velled via total station (Leica TCRM 1205) and differential GPS (Leica GS09). D sason b8 g -~
Fig.: TLS monitoring stations in the study area o . . [} Ny - - S
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