Quantification of rockfall processes on recently deglaciated 5 Rresuits and discussion
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sections of the entire rockwalls under investigation. (rightfigure) to calculate back-weathering rates
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ratios’ (COE & HARP 2007) employing the digital
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These method combination allows us to investigate rockfall
intensities on multiple time- and space-scales. The results
can also be implemented to regionalization of rockfall
processes on catchment scale (HECKMANN et al. 2014).

deglaciated rock sopes and rock slolpes
deglaciated during the late Pleistocene.

Example of the ,talus production ratio’ (after COE & HARP
2007) on the base of a DEMS5. The talus production ratio is the
area ratio between talus slope and rock wall. It gives an
impression of the rockfall susceptibility of different rock masses
on a larger scale, as long as talus slopes under similar
conditions (e.g. unconstrained deposition, similar talus
production timeframe) are compared.

collector nets: mesh size: 2mm; net
area: 80-230m?, fixed by iron hooks at
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The conclusions which can be drawn from these preliminary results are:

« Rockfall intensity is in average two orders of magnitude higher at the proglacial rockwalls compared to the rockwalls that have been deglaciated at the
Pleistocene-holocene transition, indicating a clear ,paraglacial signal‘ on recently deglaciated rockwalls

» Highest rates are detected on rock slopes with low rock mass strength adjacent to mayor faults

« The comparison of rockfall intensity and mayor precipitation events results no relationship, as the investigated rockwalls are ,weathering limited’
 Frost action seems to be a mayor control of rockfall intensity, as ,frost-cracking‘ can be observed along joints during the winter and the grain size
distribution of rockfall suggests the dominance of ,frost-cold climate weathering‘
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