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Abstract

Governments purchase everything from airplanes to zucchini. This
paper investigates the role of the technological content of government
procurement in innovation. In a theoretical model, we first show that a
shift in the composition of public purchases toward high-tech products
translates into higher economy-wide returns to innovation, leading to
an increase in the aggregate level of private R&D. Using unique data
on federal procurement in US states and performing panel fixed-effects
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1 Introduction

While previous research suggests that R&D and innovation have positive re-
turns1, it is widely believed that investment in R&D is too low from a so-
cial point of view (Jones and Williams, 1998). Recently, an intense discussion
among researchers and policymakers has emerged around the globe on whether
public procurement can be used as a policy tool to stimulate R&D and inno-
vation. In the United States, several working groups have been established
to discuss how to leverage the purchasing power of the federal government to
foster innovation (Vonortas, Bhatia and Mayer, 2012). Similarly, in Europe,
major initiatives have been launched to stimulate company R&D through pub-
lic procurement spending (Edler and Georghiou, 2007; EU, 2010, 2011). Also
countries like Australia, Brazil, China, and South Korea have started consid-
ering public procurement in their innovation policy strategies (OECD, 2011).
The main argument for such policy initiatives is that, by enlarging the size
of the market, the government can spur private R&D and innovation (for in-
stance, Schmookler, 1966; Rosenberg, 1969; Acemoglu and Linn, 2004; Moser,
2005). Indeed, case-study evidence (Nelson, 1982; Fridlund, 2000; Palmberg,
2002; Ruttan, 2006; Mowery, 2008) and econometric studies at the firm-level
(Lichtenberg, 1987, 1988; Aschhoff and Sofka, 2009; Draca, 2012) point toward
a positive relationship between government procurement and innovation.2

1 A positive effect of R&D on output and/or productivity has been found at the country
level (e.g., Coe and Helpman, 1995; Barro, 1998), industry level (e.g., Terleckyj, 1980;
Griffith, Redding and Van Reenen, 2004; Cameron, Proudman and Redding, 2005), and
firm level (e.g., Hall and Mairesse, 1995; Hall and Oriani, 2006; Parisi, Schiantarelli and
Sembenelli, 2006).

2 Geroski (1990), Dalpé, DeBresson and Xiaoping (1992), and Mazzucato (2011) argue
that the government has often been an important (and early) customer of technologi-
cally advanced products. Nelson (1982), Ruttan (2006), and Mowery (2008) highlight
that a number of new technologies—such as semiconductors, large passenger jets, the
Internet, and the GPS—have been developed with the impetus from US government
demand. Non-US examples of public procurement creating the initial market for new
technologies are the cases of digital telephone switching technologies in Sweden and Fin-
land (Fridlund, 2000; Palmberg, 2002) or the X2000 high-speed train in Sweden (Edquist
and Zabala-Iturriagagoitia, 2012). Lichtenberg (1987, 1988) and Draca (2012) use US
data to show a positive impact of federal government purchases on firms’ R&D expen-
ditures. For Germany, Aschhoff and Sofka (2009) provide evidence that government
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However, while governments purchase everything from airplanes to zuc-
chini, notably absent in the literature is an empirical investigation of the
question whether and how the innovation effects of public demand depend
on the types of products purchased by the government.3 This lack of reported
empirical research is surprising, given the differential potential of industries
to generate innovation and growth (see, for instance, Mowery and Rosenberg,
1998; Mowery and Nelson, 1999). Only recently, Cozzi and Impullitti (2010)
provided a theoretical exploration of the innovation effects of the government
spending composition by incorporating public purchases that can vary across
industries with different technological intensities in a quality-ladder model of
endogenous growth. In the model, a shift in the composition of public pur-
chases toward high-tech products creates an additional market for such prod-
ucts. The rewards for successful innovation increase, which encourages firms
to engage in R&D, raising the total amount of private R&D in the economy.
Accordingly, Cozzi and Impullitti refer to the technological content of govern-
ment purchases as a de facto innovation policy instrument. However, they
lack detailed industry-level data on government procurement to thoroughly
test their model’s predictions.4

In this paper, we provide a comprehensive econometric assessment of the
link between the technological content of government purchases and private
R&D activities. The empirical analysis is based on a theoretical model that
builds on the previous work by Cozzi and Impullitti (2010). We further de-
velop their framework by modeling how industries differ with respect to their
technological content (that is, quality jump). Specifically, using previous find-
ings on the size distribution of innovation (among others, Scherer, 1965, 1998;
Harhoff, Scherer and Vopel, 2005; Silverberg and Verspagen, 2007), we model

purchases increase firms’ sales with new products.
3 Lichtenberg (1988) and Draca (2012) consider firms’ sales to the government aggregated

over various products, but they do not separate the innovation effects of procurement by
product category. Nekarda and Ramey (2011) investigate the impact of industry-level
changes in government spending on output and wages, not on innovation.

4 Cozzi and Impullitti calibrate their model using government investment data from only
two coarse-grained sectors (Equipment/Software and Structures), which are supposed to
approximate public demand in high-tech and low-tech industries, respectively.
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the size of the quality jump after a successful innovation to be Pareto dis-
tributed. This modification allows a more rigorous analytical treatment of the
model with regard to stability properties, transitional dynamics, and the social
optimum (Wiederhold, 2009). However, we are particularly interested in the
model’s balanced growth properties from which we derive a simple equation
for the relationship between the technological content of government purchases
and private R&D that can be straightforwardly estimated using econometric
techniques.

The empirical analysis is performed at the level of US states for the period
1999–2009. We create a unique panel data set that relates private R&D ex-
penditures in US states to the technological content of federal procurement in
these states. We use administrative federal procurement data provided by the
US General Services Administration. These data are not only representative of
federal procurement spending in the US as they cover all US federal procure-
ment prime contracts valued at more than $2,500, but also contain a detailed
industry classification of procurement contracts. Using this information, we
measure the technological intensity of public procurement as the share of fed-
eral procurement in high-tech industries performed in a state in total federal
procurement in that state, considering only non-R&D procurement contracts
awarded to private-sector firms.

The results of the econometric analysis show that an increase in the tech-
nological content of government procurement induces additional private R&D
in the economy. In panel fixed-effects estimations, we find that the elasticity
of private R&D with respect to the high-tech procurement share is 0.08. In
monetary terms, each procurement dollar that the government shifts from non-
high-tech (“low-tech”) industries to high-tech industries induces additional 21¢
of private R&D. We also show that an increase in high-tech procurement leads
to additional private R&D for any given level of low-tech procurement.

Several robustness tests and instrumental-variable (IV) estimations sup-
port a causal interpretation of our findings. We show that the results are robust
to (i) further determinants of private R&D (for instance, size of the private
market, R&D procurement, universities, and public R&D support measures
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such as R&D subsidies and taxes); (ii) different sources of spurious correlation;
(iii) high-leverage observations; (iv) changes in the construction of main vari-
ables. The fixed-effects results are also confirmed by the IV analysis, which
addresses further potential endogeneity issues due to omitted variables and
reverse causality. In the IV approach, we only consider variation in the tech-
nological content of federal procurement that occurs due to changes in the
number of senators from a given state who are members of the Appropriations
Committee that authorizes and appropriates funds. The instrument relies on
the idea that politicians channel government spending to their constituencies
to reward their voters and maximize their reelection chances (Aghion et al.,
2009; Cohen, Coval and Malloy, 2011). Importantly, politicians choose those
types of projects that are highly visible and popular with voters, and effective
in raising (or securing) jobs and income in the short run. Typical projects in
this respect are social facilities and large infrastructure investments. By fund-
ing these projects, politicians change the technological composition of federal
procurement in their states. Being subject to individual and political factors
(for instance, death, retirement, seniority, and majority-party affiliation), both
the arrival of vacancies and vacancy filling on the Appropriations Committee
are unrelated to a state’s characteristics and current economic strength, so the
instrument can be considered exogenous.

The central result of this article is that the government can influence pri-
vate R&D activities through the technological composition of its purchases.
This offers potential to co-opt procurement into the innovation policy portfolio.
Specifically, redistributing procurement spending from low-tech to high-tech
industries appears to be a particularly appealing strategy as it stimulates pri-
vate R&D without the need to increase the government budget (for instance,
by raising taxes or debt). However, there may be other costs associated with a
change in the government’s purchasing behavior. For instance, if low-tech and
high-tech products are not (close) substitutes, then purchasing at the high-
end of technology might hamper the functioning of the public sector. Even
for products that are close substitutes there may be additional consequences
of shifting spending from low-tech to high-tech industries, such as structural
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change and (labor-)adjustment processes. While we discuss these costs in the
paper, future research needs to quantify them before public procurement for
furthering the objectives of innovation policy can be deemed appropriate.

The remainder of the paper is organized as follows. Section 2 introduces
the theoretical model that provides the basis for the empirical analysis. In
Section 3, we present our identification strategy for the empirical assessment
of the model’s implications. In Section 4, we introduce the data and describe
the construction of the key variables. Section 5 reports the empirical results.
Section 6 discusses the implications of our findings for policy and research.

2 The Model

The economy in the model is closed and consists of two sectors: a final goods
(or manufacturing) sector and a research sector. To avoid unnecessary com-
plications, and to highlight the basic forces at work, labor is the only input
factor used in both sectors and is not further differentiated. There is a contin-
uum of industries in the unit interval indexed by ω ∈ [0, 1], with each industry
producing exactly one consumption good (or product line). The outputs of
the different industries substitute only imperfectly for each other. The set of
commodities is fixed over time. Innovation is vertical, improving the quality
of a consumption good, which requires the R&D efforts of firms targeted at
that particular product. Let the discrete variable j ∈ {0, 1, 2, ...} denote the
quality level. An innovation in industry ω leads to a quality jump from j to
j + 1. The quality increments, denoted by λ, are independent of each other.

On the consumer side, each household is modeled as a dynastic family
whose size grows at an exogenous rate n. Household members’ labor supply
is inelastic with respect to their wage. The total number of individuals at
time t = 0 is normalized to unity (that is, labor is the numeraire). Thus,
the working population at time t equals L(t) = ent. The life-time utility of a
representative household is given by:

U(t) =
ˆ ∞

0
ente−ρt log u(t)dt, (1)
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where ρ (with ρ > n) denotes the rate of time preference, and log u(t) rep-
resents the flow of utility per household member at time t. An individual’s
instantaneous utility is represented by:

log u(t) =
ˆ 1

0
log

jmax(ω,t)∑
j=0

λj(ω, t)d(j, ω, t)
 dω, (2)

where d(j, ω, t) is the consumption of quality j in product line ω at time t.
Therefore, the utility derived by an individual from consumption equals the
sum of the quality-weighted amounts of consumption in all industries ω ∈ [0, 1].
The preferences in (2) imply that a consumer enjoys 1 unit of good ω that was
improved j times as much as λj(ω, t) units of the same good as if it had never
been improved; λ(ω, t) > 1. The logarithmic functional form in (2) is chosen
for simplicity and does not affect the main results.

The representative household maximizes lifetime utility (1) subject to the
following inter-temporal budget constraint:

B(0) +
ˆ ∞

0
w(s)e−

´ t
0 [r(τ)−n]dτds−

ˆ ∞
0

e−
´ t

0 [r(τ)−n]dτT (s)ds

=
ˆ ∞

0
e−
´ t

0 [r(τ)−n]dτc(s)ds,

where B(0) is the ex ante endowment of asset holdings of a representative
household, w(t) is the individual wage rate, T (t) is a per capita lump-sum tax,
and c(t) is the flow of individual consumer expenditures. Under the assumption
that when a household member is indifferent between two quality vintages, the
higher-quality product is bought, then the household maximization problem
yields the following static demand function:

d(j, ω, t) =


c(t)

p(j,ω,t) j = jmax(ω, t)
0 otherwise

 , (3)

where p(j, ω, t) is the price of product ω with quality j at time t.
The dynamic optimization problem, that is, the allocation of lifetime ex-
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penditures over time, consists of maximizing the discounted utility (1) subject
to (2), (3)

ċ(t)
c(t) = r(t)− ρ. (4)

The intertemporal optimization condition (4) implies that if the market inter-
est rate, r, is above the time preference rate, ρ, consumers increase savings
“today” and spend more “tomorrow,” resulting in a rise of consumption over
time (vice versa for r < ρ). A constant consumption expenditures path is op-
timal when r equals ρ. Because preferences are homothetic, aggregate demand
in industry ω at time t is given by D(j, ω, t) = d(j, ω, t)L(t).

At any point in time, only one firm possesses the technology to produce
1 unit of the highest-quality product using 1 unit of manufacturing labor,
Y = LY . The best-practice firm has a quality advantage of λ over the next
best firm in the industry. The optimal strategy for the quality leader is to set
a limit price pL(ω, t) that prevents any other firm in the industry from offering
its product without losses. The highest price the quality leader can set to
capture the entire industry market is their lead over the next best quality
follower, implying pL(ω, t) = λ(ω, t)w = λ(ω, t). If the quality leader sets a
price above the limit price, she will immediately lose all of her customers.

Government procurement is financed by lump-sum tax revenues and is
strictly non-negative in all industries at any point in time. The government
budget is assumed always to be balanced. Denoting per capita public demand
in industry ω at time t by G(ω, t), and recalling that marginal production costs
are unity because labor is the numeraire, the quality leader in each industry
earns a profit flow:

π (ω, t) = [λ (ω, t)− 1]×
[
c(t)L(t)
λ (ω, t) + L(t)G (ω, t)

λ (ω, t)

]
, (5)

where λ(ω, t)
[
c(t)L(t)
λ(ω,t) + L(t)G(ω,t)

λ(ω,t)

]
corresponds to market size (sales to private

and public customers) in industry ω. The factor [λ (ω, t)− 1] is the markup
over the marginal cost.
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There is free entry into R&D, so firms can devote their research effort to
developing products in any industry. Firms target their R&D resources only to
industries in which they are not the current quality leader; this is so that they
do not cannibalize their current monopoly rents.5 Labor is the only input used
in R&D, and it can be freely allocated between manufacturing and research,
implying that all workers earn the same wage w = 1. The aim of each firm’s
R&D efforts is superior quality and to monopolize the market by achieving
a patent of infinite patent length. All firms have access to the same R&D
technology. In industry ω at time t, a firm employing li(ω, t) units of labor in
R&D faces a Poisson arrival rate of innovation, Ii(ω, t), equal to:

Ii(ω, t) = Ali(ω, t)
X(ω, t) , (6)

where A > 0 is a given technology parameter, and X(ω, t) is a function that
captures the exogenously given industry-wide difficulty of conducting R&D.

The innovation process in (6) is stochastic, with Ii(ω, t)dt being the in-
stantaneous probability of winning the R&D race and thus becoming the next
quality leader. We follow Jones (1995) and Segerstrom (1998) in assuming
that the R&D difficulty in an industry grows at a rate proportional to the
arrival of innovation (“no scale effect” property):

Ẋ(ω, t)
X(ω, t) = µI(ω, t), (7)

where I(ω, t) = ∑
i Ii(ω, t) denotes the industry-wide instantaneous arrival rate

of the innovation, µ > 0 is an exogenously given parameter that captures the
scientific opportunities in the economy, and X(ω, 0) = X0 for all ω.

In previous quality-ladder growth models (Grossman and Helpman, 1991b,a;

5 The effect that monopolists may systematically have less incentive to innovate than po-
tential rivals, eventually ceding technological leadership, was first described by Arrow
(1962) and is a common feature in the literature of both Industrial Organization (Fuden-
berg et al., 1983; Fudenberg and Tirole, 1985) and endogenous growth models. However,
as discussed by Cozzi (2007a), in models with a free-entry competitive R&D environ-
ment and Nash competition between researchers (as assumed here), the current quality
leaders are actually indifferent between investing or not in R&D, but if they do, the other
features of the equilibrium are not affected. See also Etro (2004).
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Aghion and Howitt, 1992; Li, 2001, 2003), different industries were usually
treated as being structurally identical. Thus, the economy could be regarded
as if it consisted of only a single industry. To overcome the symmetric treat-
ment of industries, Cozzi and Impullitti (2010) assume that the size of the
quality improvement after a successful innovation is stochastic and industry-
specific. We modify Cozzi and Impullitti’s modeling framework in that we im-
pose a specific assumption on how industries differ in terms of their innovation
potential. This allows us to solve the model for the steady state algebraically,
which yields an analytical expression relating the technological content of pub-
lic procurement to private R&D to guide our econometric analysis. Consistent
with the empirical literature on patent values (among others, Scherer, 1965,
1998; Harhoff, Scherer and Vopel, 2005; Silverberg and Verspagen, 2007), we
assume the size of the quality jump after a successful innovation to be drawn
from a Pareto distribution (Minniti, Parello, and Segerstrom, Forthcoming).6

The probability density function of a Pareto distribution with a shape param-
eter of 1/κ, κ ∈ (0, 1), and a scale parameter equal to 1 reads:

g(λ) = 1
κ
λ−

1+κ
κ , λ ∈ [1,∞). (8)

For analytical tractability, we assume that the initial distribution of λ val-
ues is given by g(λ) at t = 0, and it does not change over time as the R&D
dynamics start and successfully innovating firms draw new values of λ. No-
tice further that X(ω, t) = X0 for all ω implies that I(ω, 0) = I0. Hence, a
symmetric equilibrium path exists, along which I(ω, t) = I(t) and X(ω, t) =
X(t) for all ω. As is common in the literature on quality-improving innovation
and growth, in the further analysis we focus on this symmetric equilibrium.

The government allocates procurement across industries according to the
following “rule” (Cozzi and Impullitti, 2010):

G(ω, t) = Ḡ+ γε(ω, t), 0 ≤ γ ≤ 1, (9)

6 Within a slightly different methodological framework, Kortum (1997) and Jones (2005)
model the realization of new ideas (interpreted as productivity levels or production tech-
niques) to be Pareto distributed.

9



where

Ḡ ≡
ˆ 1

0
G(ω)d(ω),

ε ≡

 −ε1 for λ (ω, t) < 1
1−κ

ε2 for λ (ω, t) ≥ 1
1−κ

,

0 < ε1 < Ḡ,

0 < ε2 < Ḡ.

In (9), Ḡ denotes the average per capita public procurement, that is, the
amount of public demand a quality leader in industry ω will receive if the
government spreads its expenditures G(ω) evenly across industries.7 The pa-
rameter γ determines the technological content of procurement. In particular,
γ indicates the portion of government demand in industries with quality jumps
above or below the average in the economy. An equal treatment of all indus-
tries occurs for γ = 0. γ > 0 implies that public purchases in industry ω will
be higher (lower) than in the symmetric case if the quality improvement in
this industry is greater (smaller) than the average economy-wide quality incre-
ment. For simplicity, we assume that once an industry experiences a quality
jump above (below) the economy-wide average and γ 6= 0 holds, the govern-
ment spends more (less) in this industry, irrespective of how far above (below)
the average the quality jump is in this industry.

It is straightforward to show that the strictly positive values ε1 and ε2,
which indicate how much government purchases in “low-jump” or “high-jump”
industries deviate from the average, cannot be chosen independently (see Ap-
pendix A.1). As the distribution of the λ values does not change over time,
there is always the same share of industries with quality increments above or
below the average. Moreover, to highlight the effects of the technological con-
tent of government purchases, we assume that Ḡ is constant (unless otherwise

7 Because there is a continuum of industries indexed on the unit interval, average values
in the model equal total values.
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noted).
Under the assumption of no arbitrage on the stock market, and using (9)

to solve for the expected profits earned by a successful innovator (see Ap-
pendix A.2), we obtain the following expression for the discounted value of
the expected profit flow of a firm winning an R&D race:

υe(ω, t) =
κ

1+κL(t)[c(t) + Ḡ+ γΓ]
r(t) + I(t)− ẋ(t)

x(t) − n
, (10)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0 and x(t) ≡ X(t)/L(t) is a measure

of the relative, that is, population-adjusted, R&D difficulty. Because the RHS
of (10) does not contain any industry-specific variables, υe(ω, t) = υe(t) is the
average market valuation of a successful innovation in the economy. In (10),
the effect of “creative destruction” is revealed; the more research that occurs
in an industry, the shorter, ceteris paribus, is the duration of the accruing
monopoly profits and the smaller are the incentives to innovate. By subtracting
the rate of population growth, n, in the denominator of (10), we also take
into account that aggregate consumer markets and, thus, profits earned by a
successful innovator increase with a growing population.

Equation (10) already highlights the market-size effect in innovation: the
greater L, c, or Ḡ are, that is, the larger the market is for a new product,
the more profitable it is to be the producer of that good. Another important
implication of (10) is that the profitability of a successful innovation in the
economy increases in γ. In other words, it is not only the size of the govern-
ment market that matters for the valuation of a successful innovator, but also
how government expenditures are distributed across industries. Specifically,
the relatively more the government purchases in industries with above-average
quality jumps, the higher the rewards for successful innovation activities be-
come on average. In what follows, we will show that the positive effect of
government market size on expected firm value translates into more research
effort in the whole economy.

The R&D equilibrium condition can be derived from the condition for profit
maximization in R&D and (10) as:
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x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
r(t) + I(t)− ẋ(t)

x(t) − n
, (11)

while the resource constraint (that is, the labor-market clearing condition) of
the economy reads (see Appendix A.3):

1 = c(t) + Ḡ− γκΓ
1 + κ

+ I(t)x(t)
A

. (12)

The labor-market equilibrium in (12) holds for all t in and outside the equi-
librium, because factor markets clear instantaneously.

Along the balanced-growth path (see Appendix A.4), all endogenous vari-
ables develop at a constant (although not necessarily at the same) rate and
the research intensity, I(t), is common across industries. Using these results,
as well as (6) and (A.12), the amount of labor devoted to R&D in the steady
state can be derived as:

L∗I = κn (1 + γΓ)
n (1 + κ− µ) + µρ

× L. (13)

Equation (13) reveals the main result of the model; namely, that a positive rela-
tionship exists between the technological content of government procurement,
measured by γ, and the amount of private R&D performed in the economy.8

Keeping everything else constant, an increase in the share of procurement in
industries with above-average quality jumps, γ, instantly raises the expected
value of becoming a quality leader. This occurs because higher quality jumps
imply higher markups over marginal cost and, thus, higher rewards for success-
ful innovators (see (10) and (A.8)). Firms respond by investing more heavily
in R&D, so the economy-wide level of company R&D increases. Due to di-
minishing returns of the R&D technology in (6), the increase in private R&D
must be permanent to maintain constant rates of technological change and

8 Since economic growth in our model is entirely driven by firms’ R&D investment, a pos-
itive relationship between γ and the macroeconomic growth rate is trivially established.
However, as we are interested in the question of whether government market size affects
innovation, we focus on the impact of an increase of γ on private R&D.
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economic growth along the balanced-growth path.
Finally, the positive influence of the technological intensity of government

procurement on private R&D in the long-run equilibrium suggested by Equa-
tion (13) also holds off-steady-state. This can be easily seen from the resource
constraint (12), which implies LI(t) =

{
1−

[
c(t) + Ḡ− γκΓ

]
/ (1 + κ)

}
L(t).9

3 Empirical Specification and Estimation Is-
sues

The main result of our theoretical analysis in Section 2 is that an increase in the
technological content of public procurement (that is, the share of procurement
in industries with above-average quality jumps) stimulates private R&D in the
economy. For the purpose of the empirical implementation of the model, we
proxy industries with above-average quality jumps by high-tech industries.10

As shown in Oliveira Martins, Scarpetta and Pilat (1996), markups (which are
theoretically equivalent to quality jumps) are indeed above the economy-wide

9 A number of other model features are worth noting. First, the long-term growth rate in
the economy depends only on the rate of population growth, n, technological research op-
portunities, µ, and average innovation size, κ. These parameters are, in principle, outside
the control of government. Thus, the model yields a policy ineffectiveness proposition
according to which the government cannot influence the long-term growth rate (see also
Jones, 1995, 1999). Changes in the technological composition of government purchases
or other policy measures can nonetheless have temporary effects on growth, that is, they
can influence the level of the balanced-growth path. Second, the balanced-growth equi-
librium is either locally saddle-path stable or locally indeterminate, but never unstable.
In other words, there exists either one or an infinite number of adjustment trajectories
toward the steady state (see also Cozzi, 2007b). Third, the model exhibits transitional
dynamics, and policy can influence the growth rate along the transition to the balanced-
growth equilibrium. Fourth, considering the various externalities apparent in the model,
laissez-faire growth is not optimal. When calculating the social optimum, we find that
the relationship between the technological content of government procurement and social
welfare is nonlinear. It is, therefore, not welfare-maximizing if the government spend all
of its resources on industries with the highest innovative capabilities. See Wiederhold
(2009) for more details.

10 In a theoretical framework similar to ours, Cozzi and Impullitti (2010) also make the
assumption that high-tech industries have above-average quality jumps.
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average in high-tech industries.11

Ideally, we would like to test the implications of the model in a cross-
country setting over time. However, reliable international data that permit to
distinguish between procurement in high-tech and other industries are hardly
available.12 Only the United States provides high-quality administrative data
on federal procurement, cross-classified by year and industry. Making addi-
tional use of the fact that the US data contain information about the place
where the federal procurement contracts are performed, we construct a unique
panel data set that allows us to test our model’s predictions at the level of the
US states in the period 1999–2009.

Equation (13) provides the starting point for our econometric analysis of
the impact of the technological content of government procurement on private
R&D. Log-transforming equation (13) and adding state and time fixed effects
yields:

logR&Di t = α + β1 logHIGH−TECH−SHAREi t−1+

+ β2 logNON−R&D−PROCi t−1 + β3 logPOP i t−1+

+ ξi + νt + ui t

(14)

where R&Di t is the amount of company-funded R&D expenditures in state i

11 Oliveira Martins, Scarpetta and Pilat (1996) estimate markups over marginal cost for 29
manufacturing industries for the G7 countries in the period 1970–1992. For industries
that the Bureau of Labor Statistics (BLS) classifies as high-tech (we also adopt the BLS
definition, see Section 4.1), the estimated average markup is 34%, while for medium-
and low-tech industries the average markup is only 20%. This pattern is even more
pronounced in the US. Here, the average markup in high-tech industries is more than
three times higher than that in the remaining industries (46% vs. 13%).

12 For a number of European countries, data on public procurement by industry can be
obtained from tender information published in the Official Journal of the European
Union. However, a compulsory requirement to publish data exists only for procurement
tenders on a Europe-wide scale. Since the share of Europe-wide tenders greatly differs
across Member States, these data are not suitable for cross-country comparisons.
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in year t.13 HIGH−TECH−SHAREi t−1 indicates the technological intensity
of procurement (γ in equation (13)). It is defined as federal non-R&D procure-
ment in high-tech industries as a share of total federal non-R&D procurement
in the private sector in state i at time t − 1. The HIGH−TECH−SHARE
is lagged by one period mainly for two reasons: first and foremost, we assign
the procurement volume to the year of contract signature, whereas contracts
might actually start some time after they are signed (see Section 4.1 for de-
tails). Second, including the high-tech procurement share with a lag likely
reduces reverse causality bias (see also Draca, 2012).

NON−R&D−PROCi t−1 is the total amount of federal non-R&D procure-
ment in a state. Including NON−R&D−PROCi t−1 as a control variable en-
sures that the estimated coefficient on HIGH−TECH−SHARE shows only
the effect of a change in the technological composition of government pro-
curement that is suggested by the theoretical model, as opposed to a vol-
ume effect resulting from a change in total procurement.14 Specifically, when
keeping the total amount of procurement constant, any increase (decrease) in
HIGH−TECH−SHARE necessarily implies more (less) procurement in high-
tech industries at the expense of procurement in low-tech industries. POPi t−1

is the number of state inhabitants, accounting for the effect of the total market
size on private R&D.15

Further, Equation (14) contains a full set of state fixed effects, ξi, that

13 In the simplified model economy, R&D employment corresponds to R&D expenditures
because labor is the only production factor (that is, there are no materials, laborato-
ries, machines or the like). However, we use total R&D expenditures rather than R&D
employment in the empirical analysis because in reality, the wages and salaries of R&D
employees comprise only part of total firm R&D spending. According to the US Bureau
of Economic Analysis, using data from the National Science Foundation, the wages of
scientists, engineers, and support personnel accounted for roughly 38% of R&D expen-
ditures in the scientific R&D services sector in the period 1997–2007 (Robbins et al.,
2012).

14 The effect of an increase in procurement in high-tech industries for a given amount of
procurement in other industries in analyzed in Section 5.4.

15 See also Sokoloff (1988), Acemoglu and Linn (2004), and Moser (2005) for previous
empirical evidence on the role of market size in innovation. POP is lagged by one period
to take into account that firms’ R&D investment decisions are based on the current
market information.
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pick up all kinds of unobserved state-specific factors that are constant over
time. In addition, a full set of year dummies, νt, absorbs unobserved effects
that equally affect all states; for instance, business cycles, changes in (national
and global) demand and market conditions, or national policy changes. The
year dummies also account for changes in technological opportunities (µ in
equation (13)). The error term is denoted by ui t.16

A straightforward way to assess the impact of the technological content of
public procurement on private R&D employment is to estimate equation (14)
by OLS; we will refer to this specification as panel fixed-effects (FE) estimation.
However, drawing causal inferences on the basis of a simple FE estimation of
Equation (14) is not foolproof. Specifically, there might be further unobserved
factors that are correlated with both private R&D and the technological inten-
sity of government procurement, or that may even jointly determine them. For
instance, the amount of federal procurement contracts in high-tech industries
might depend on a variety of unobserved time-variant state characteristics (for
instance, state-specific policy changes and regulations) that are also system-
atically related to private R&D. Furthermore, reverse causality problems arise
if, for example, the likelihood to receive a procurement contract and firm’s
R&D capabilities are related (Lichtenberg, 1988).

If such confounding factors exist and are not captured by the included
control variables, or by the fixed effects, the FE estimates on the impact of
the technological content of public procurement on private R&D might be
biased, while the direction and severity of the bias is not clear a priori. To
address these endogeneity concerns, we apply an instrumental-variable (IV)
strategy that exploits exogenous variation in the share of federal procurement
in high-tech industries to identify its effect on private R&D (see Section 5.3).

In both approaches, FE and IV, we cluster standard errors by state and
year17 to account for possible correlations in the error structure within states

16 In Section 5.2, we augment Equation (14) to account for other determinants of private
R&D, such as sectoral differences between states, R&D procurement, effects from uni-
versities, public R&D support measures, and lobbying spending.

17 See Cameron, Gelbach and Miller (2011) for a theoretical derivation of the two-way
clustering method and Acemoglu (2003) and Englmaier, Roider and Sunde (2012) for
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over time and within years across states (see also Wilson, 2009).18

4 Data and Variable Construction

4.1 Technological Intensity of Public Procurement

We use administrative data on individual federal procurement contracts in the
United States from the Federal Procurement Data System—Next Generation
(FPDS-NG), provided by the General Services Administration (GSA). In the
United States, federal agencies are required, by the Federal Acquisition Reg-
ulation, to report directly to the FPDS-NG all prime contract actions above
the micropurchase threshold of $2,500 for companies that are separate legal
entities (Goldman, Rocholl and So, 2010).19 In total, our data cover more
than 98% of all federal procurement actions of agencies subject to the report-
ing requirement (FPDS-NG, 2007).20 In our period of analysis, 1999–2009,
the FPDS-NG database contains approximately 21.5 million contract actions.
The information in the FPDS-NG procurement data encompasses, inter alia,
the contract volume (in current USD), award and completion dates, the place
of performance, whether or not a contract is primarily for R&D, Federal Prod-

empirical applications.
18 We tested several alternative ways to correct for serial correlation in our sample. First,

we performed FGLS regressions using the Prais-Winsten transformation, which explicitly
models the serial correlation in the error term. In case of AR(1) serial correlation and if
strict exogeneity holds, using the Prais-Winsten transformation is asymptotically more
efficient than the FE estimator. However, when T is small and strict exogeneity does not
hold, FGLS tends to exacerbate a potential bias (Wooldridge, 2002a, 2002b). Second,
we used the method developed by Baltagi and Wu (1999), who derive a transformation
of the data that removes the AR(1) component. Results were similar in these additional
specifications.

19 Before 2004, only contracts of more than $25,000 had to be reported. Contracts under
$25,000 account for only 2% of total procurement (FPDS-NG, 2007). However, to ensure
that the change in the reporting threshold does not affect our results, we additionally
estimated all specifications reported below (i) with an additional dummy variable taking
the value of 1 after the change in the reporting obligations came into force, and (ii) with
the dummy variable interacted with all other explanatory variables. These specifications
yielded similar results to those reported below.

20 There are only a few exceptions to the reporting requirement, the largest being the US
Postal Service.
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uct and Service Code (PSC), and, since 2001, the NAICS-classified industry
to which a contract can be assigned. Procurement contracts awarded by non-
federal public entities are not included in the data.21

Our indicator for the technological content of government procurement is
defined as the share of federal non-R&D procurement in high-tech industries
in total federal non-R&D procurement in a state and year. We use only federal
non-R&D procurement contracts, because, in accordance with the theoretical
model, we are interested in the effect of increasing market size due to govern-
ment demand on private R&D. Federal R&D procurement, instead, essentially
means that firms conduct R&D by the order of the government (David, Hall
and Toole, 2000; GSA, 2005).

To construct the indicator for the technological content of procurement, we
proceed as follows. First, we assign individual procurement contracts to high-
tech industries, using the NAICS information contained in the FPDS-NG data
and the high-tech industry definition of the Bureau of Labor Statistics (BLS)
(Hecker, 2005). According to the BLS definition, there are fourteen high-tech
industries at the four-digit NAICS level (see Table A.1); all remaining indus-
tries are classified as non-high-tech.22 However, in the FPDS-NG data, NAICS
codes are not always available for contracts prior to 2001. Thus, to obtain a
consistent time series at the NAICS level also for the years before 2001, we

21 Procurement by non-federal public agencies (that is, state and local agencies) may consti-
tute a significant part of total public procurement (Audet, 2002). However, non-federal
public procurement data are not provided at a level of detail necessary for our analysis.
Moreover, there is no evidence of systematic differences in the technological content of
purchases by federal and non-federal public agencies (Coggburn, 2003). Finally, federal
procurement is more likely to be independent of state-level characteristics than non-
federal procurement, thereby reducing the problem of endogeneity discussed in Section
3.

22 The BLS classifies industries as high-tech if the percentage of science, engineering, and
technical occupations in total employment exceeds the average for all industries at least
by a factor of 5 (Hecker, 2005). An alternative classification of high-tech industries, based
on R&D expenditures, is provided by the BEA in its R&D Satellite Account (Fraumeni
and Okubo, 2005). However, in the R&D Satellite Account, a large part of R&D before
2004 was erroneously attributed to the wholesale trade industry sector. In reality, this
R&D was mostly undertaken in pharmaceutical and computer manufacturing companies.
Despite the fact that since 2004 the NSF has released a revised industry classification,
the BEA still uses the unrevised methodology (NSF, 2007; Robbins et al., 2007).
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made use of the fact that PSC information is available for the entire obser-
vation period. and developed a PSC-NAICS concordance based on contract
data from 2001 to 2009 for which both classifications were consistently pro-
vided. This allowed us to assign NAICS codes to those procurement contracts
where NAICS information was originally missing.23 Since in our analysis we
are interested in the effects on private R&D, we exclude federal procurement
contractors in the public sector (NAICS 92).

Second, to assign procurement contracts to states, we use the informa-
tion on the place of contract performance.24 We restrict our analysis to the
50 US states and District of Columbia (DC)25; federal procurement contracts
performed outside the United States are excluded. Third, we assign the to-
tal contract value to the year of contract signature reported in the contracts
data, even if contracts have a several-year duration.26 Finally, we aggregate

23 If more than one NAICS code corresponded to a PSC, each of the respective NAICS
industries received a share of the contract’s gross value that equaled its frequency of
occurrence.

24 In the empirical analysis, we use only federal prime contracts, which might cause mea-
surement error in the high-tech procurement share if the likelihood that federal prime
contract recipients reward subcontracts to firms in other states differs between low-tech
and high-tech contracts. Unfortunately, there was no reporting requirement for sub-
contracts prior to 2010 (see https://www.fsrs.gov), so we are not able to account for
subcontracting in our analysis. To get an idea whether subcontracting could confound
our results, we collected data on the value of first-tier sub-awards entered in the Fed-
eral Funding Accountability and Transparency Act Subaward Reporting System (FSRS)
for the year 2012 (www.USASpending.gov). These data are collected from two sources.
First, agencies must report prime contract award information through the FPDS-NG
(the data used in this paper). Second, all prime contract awardees must report subcon-
tracts to the FSRS. We find that only 4.1% of the value of prime contracts in a state
are subcontracted to other states, while this share is very similar in high-tech industries
(3.8%) and low-tech industries (4.2%). Therefore, we are confident that subcontracting
does not confound our results.

25 For the ease of exposition any reference to “state” in this paper also includes DC.
26 We do so for three reasons. First, the FPDS-NG data do not always contain information

on the end date of contracts; hence, it is not always possible to distribute the value of
multi-year contracts over the contract duration. Second, once a firm signs a government
contract, the total contract value is known and the firm can plan accordingly. We thus
think that most of the increase in R&D due to increased government sales will happen
up-front. Third, it appears to us that how the total contract value is distributed over the
contract duration is a critical issue chiefly at the firm level. Indeed, at the firm level, our
strategy would likely cause a “spiky” distribution of procurement volume, as there would
always be peaks in the periods of contract signing and no procurement at all in the other
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contract value by type of industry, state, and year and compute the share of
federal procurement in high-tech industries in total procurement in a state and
year.27 We use the gross value of procurement contracts, that is, the number of
dollars initially obligated by an action.28 Contract values are converted from
current into constant USD using the Government Consumption Expenditures
and Gross Investment Price Index with base year 2000 from the Bureau of
Economic Analysis (BEA).

4.2 Private R&D

We use data on company-funded private R&D spending from the US Survey
of Industrial R&D (SIRD), administered by the National Science Foundation
(NSF). The NSF surveys a stratified representative sample of firms with five
or more employees to collect information on all domestically performed R&D
expenditures by the source of funding (private and public) and state of per-
formance.29 We focus on company-funded private R&D, because we want to
investigate whether an increase in the size of high-tech markets due to govern-
ment procurement creates incentives for additional R&D spending by firms.
The SIRD data are biannual from 1981 to 1997 and annual since then.

The R&D series from the NSF has a non-negligible number of missing val-

periods, a situation that could have important consequences for the econometric analysis.
However, at the aggregate level (US states) at which we are operating, whether or not the
value of multi-year contracts is distributed over the contract period is less critical because
in every period there are firms receiving government contracts. Moreover, the higher the
spatial level of aggregation, the smoother the distribution of procurement spending. In
fact, we find the volume of government procurement by state to be relatively “smooth.”

27 We dropped two individual contracts, a $68 billion contract awarded in Illinois in 2006
and a $55 billion contract in Pennsylvania in the same year. These values correspond to
16 (Illinois) or 8 (Pennsylvania) times the yearly average value of all contracts awarded
in these states between 1999 and 2009. However, keeping both contracts in our sample
leaves all results unaffected (details available on request).

28 Subtracting deobligations does not change the results.
29 Thee SIRD was redesigned in 2008 to provide a richer breakdown of sources of funds for

intramural R&D (see Wolfe, 2008, for details). However, since this change in the survey
design equally affected all states, the year dummies in Equation (14) ensure that our
results are not influenced by the change. In unreported regressions, we also interacted
a dummy variable indicating whether the private R&D data were provided by the new
survey with all regressors, without any impact on our results.
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ues because disclosure restrictions forbid the publication of information when
the number of surveyed firms in a state is small (Wolfe, 2012). However, the
severity of this problem generally declines over time, so we start our analysis in
1999. This considerably decreases the number of missing values for company-
funded R&D, improving the reliability and representativeness of the results.30

R&D expenditures are converted into constant dollars, using the GDP deflator
for the year 2000.31

5 Empirical Evidence

5.1 Baseline Results

This section reports the baseline results of our empirical analysis. We begin
by providing a visual inspection of the relationship between the technological
composition of government procurement and private R&D. Figure 1 shows
this relationship for each state individually. It is easy to see that the high-tech
procurement share and private R&D follow similar patterns in the majority of
states.

The first visual impression of a positive association between the technolog-
ical content of federal procurement and private R&D is confirmed by Figure 2,
which plots the share of federal procurement in high-tech industries (lagged by
one year and in logs) against private R&D (in logs); the correlation between
both variables is 0.38 (p < 0.01).

30 There are 36 missing values in our period of analysis 1999–2009. In three states (Kansas,
New Hampshire, and Rhode Island), private R&D is missing in more than half of the
cases. Results are robust to dropping these states from the sample.

31 Ideally, we would want to deflate the R&D expenditures data using a price deflator that
allows us to take into account productivity gains in the R&D output. However, reliable
output-based R&D deflators are currently not available. Because we cannot draw upon
any measure of a price index for the output of R&D processes, a possible alternative
is to use a deflator for the goods that embody R&D. Lacking reliable information on
the beneficiaries of R&D performed in a state (we cannot distinguish between R&D
performed and R&D paid for by companies), we use R&D spending deflated by the
aggregate GDP deflator.
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Figure 1: Technological Intensity of Government Demand and Private R&D across States
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Notes: The figure plots company R&D and high-tech procurement share across the 50 US states and DC over the 1999–2009 sample
period. Company R&D is company-funded R&D expenditures in a state (millions of constant USD, base year 2000). High-tech share
is the share of federal non-R&D procurement in high-tech industries in total federal non-R&D procurement in a state, considering only
procurement contracts awarded to private-sector companies. Variables are in levels. Vertical axes are state-specific. Data sources:
FPDS-NG, SIRD.
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Figure 2: Technological Intensity of Government Demand and Private R&D
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Notes: The figure is based on pooled cross-sectional data covering 50 US states and DC
in the period 1999–2009. Company R&D denotes company-funded R&D expenditures in
a state (millions of constant USD, base year 2000). High-tech share is the share of federal
non-R&D procurement in high-tech industries in total federal non-R&D procurement in a
state, considering only procurement contracts awarded to private-sector companies. The
fitted line maps a log-linear relationship between the lagged high-tech procurement share
and company-financed R&D. Data sources: FPDS-NG, SIRD.

In Table 1, we report the results obtained from estimating the model in
Equation (14) by OLS.32 In Column (1), we only condition the estimates on
state and year fixed effects. In Column (2), we control for the total amount of
federal non-R&D procurement; keeping constant total government market size
ensures that the coefficient on the high-tech procurement share captures the
effect of reallocating procurement between low-tech and high-tech industries
32 Summary statistics and pairwise correlations are reported in Table A.2.
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on private R&D. In Column (3), we additionally include population to control
for the size of the private market.33

In line with the predictions of the theoretical model, we find a positive
and statistically significant relationship between the technological intensity
of federal procurement and company-funded R&D. Across specifications, the
coefficient on the high-tech procurement share remains virtually unchanged.
According to the estimate in Column (3), the elasticity of private R&D with
respect to the high-tech procurement share is 0.079. Given a standard devi-
ation of the high-tech procurement share of 0.20, this result implies that a
one-standard-deviation increase in the high-tech procurement share is associ-
ated with an average increase in private R&D of 6.3% ($230 million). Put
differently, each dollar that the government takes away from low-tech indus-
tries to spend it in high-tech industries relates to an increase in private R&D
of about 21¢.

33 Population data are taken from the BEA’s midyear estimates.
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Table 1: Technological Intensity of Government Demand and Private R&D:
Basic Results

Dependent Variable: Company R&D (log)
(1) (2) (3)

High-Tech Share (log, t-1) .074∗∗ .074∗∗ .079∗∗

(.031) (.031) (.031)
Non-R&D Procurement (log, t-1) –.026 –.026

(.036) (.036)
Population (log, t-1) 1.001∗∗

(.473)
State Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Observations 525 525 525
States 51 51 51
R-squared (within state) .02 .02 .03

∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01

Notes: Fixed-effects estimations. Sample: 50 US states and DC, 1999 to 2009. Company
R&D is the amount of company-funded R&D in a state (36 observations are missing due
to disclosure restrictions). High-Tech Share is the share of federal non-R&D procurement
in high-tech industries in a state in total federal non-R&D procurement in the private
sector in that state. Non-R&D Procurement is the state-level amount of non-R&D federal
procurement. Population is the number of inhabitants in a state. All regressions control for
state and year fixed effects. Standard errors (reported in parentheses) are robust to panel
(state) heteroskedasticity and within-state autocorrelation. Data sources: BEA, FPDS-NG,
SIRD.

5.2 Robustness

In Table 2, we report the results from testing the robustness of our baseline
findings from Section 5.1. We begin by accounting for the fact that the rele-
vant market for companies—especially high-tech companies—may extend well
beyond the states in which they are located. In Column (1), we proxy out-
of-state market size by the out-of-state population (that is, for each state, US
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population minus population of the respective state). In Column (2), we use
the weighted sum of the population in all other states, with the weighting ma-
trix based on the share of commodities that each state trades with any other
state in the origin state’s total commodity trade volume.34 This specification
controls for differences in the importance of the size of out-of-state markets for
firms. In Column (3), we replace the year dummies with a time trend (linear
and quadratic) and US-wide population to capture aggregate demand shocks
to private R&D (see also Wilson, 2009).

In Columns (4)–(7), we control for further determinants of private R&D. In
Column (4), we include federal R&D procurement to account for the possibility
that our results are driven by government R&D contracts, since the govern-
ment often simultaneously purchases R&D and “regular” goods and services
(Nelson, 1982; Lichtenberg, 1987).35 Column (5) controls for direct govern-
ment support for private R&D in an even broader fashion. We use data from
the SIRD, which contain R&D subsidies, the amount of work done within the
scope of R&D contracts, and the R&D portions that the awarded non-R&D
procurement contracts entail. In Column (6), we account for effects on private
R&D of R&D tax credits and corporate income tax rates by including a mea-
sure of R&D user costs (obtained from Moretti and Wilson, 2014). In Column
(7), the number of graduates in science and engineering in a state is included
to control for the impact of universities on company R&D (e.g., Jaffe, 1989).36

In Columns (8)–(10), we check for further variables that might lead to
a spurious correlation between the high-tech procurement share and private
R&D. In Column (8), we control for changes in a state’s industry structure,
adding the GDP shares of 52 industries.37 For instance, the growth of high-tech

34 The data are from the Transportation Commodity Flow Survey administered by the US
Bureau of Transportation Statistics. Data are from 1997 to avoid endogeneity.

35 We lag R&D procurement by one period because contracts start some time after they
are signed and to reduce reverse causality problems.

36 Data stem from the NSF Survey of Graduate Students and Postdoctorates in Science
and Engineering.

37 Data are obtained from BEA. Whenever provided, we use the GDP data at the three-
digit NAICS level; otherwise, we draw on two-digit NAICS level data. Eight industries
with missing values due to disclosure limitations were dropped.
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industries in a state may simultaneously lead to a larger amount of high-tech
procurement (for example, as the number of potential contractors increase)
and to more private R&D. In Column (9), we include firms’ lobbying spending
from the Center of Public Integrity, since our results would be biased if firms’
lobbying activities influenced the likelihood of being awarded federal procure-
ment contracts and were also related to R&D performance. Column (10) adds
federal aid to state from the US Census Bureau as control, which covers all
sort of federal assistance to states. By including this variable, we capture that
support measures provided to a state could directly affect private R&D. At
the same time, states in the need of government support might have fewer
high-tech procurement contracts. Finally, in Column (11), we jointly include
all main controls.38

In all specifications, the estimated coefficient on the high-tech procurement
share remains virtually identical to that in our baseline specifications in Table
1, both in terms of magnitude and significance level.

We also test whether the relationship between the share of high-tech pro-
curement and private R&D is driven by specific observations. Figure 2 plots
leverage against the (normalized) residuals squared. Points above the horizon-
tal line have higher-than-average leverage (that is, influence on the regression
line); points to the right of the vertical line have larger-than-average residuals.
We observe that North Dakota and Wyoming have relatively large residu-
als, while DC, Kansas, New Hampshire, and Rhode Island appear to have a
large influence on the regression line. However, excluding DC, Kansas, New
Hampshire, North Dakota, Rhode Island, and Wyoming did not change the
results. Additionally, we rerun the regressions dropping each state separately;
no matter which state we excluded, the high-tech procurement share retained
a positive and significant coefficient. Thus, we conclude that our main results
are not driven by specific observations.

38 We omit R&D procurement due to collinearity with federally-financed R&D and firm
lobbying spending due to the large number of missing observations in the lobbying data.
Moreover, we use unweighted out-of-state population to measure market size outside the
state.
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Table 2: Technological Intensity of Government Demand and Private R&D: Robustness Checks

Dependent Variable: Company R&D (log)
Market Market Market R&D R&D R&D Graduates Industry Lobby State Main
Size I Size II Size III Proc Federal Costs SE Structure Aid Controls
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

High-Tech Share (log, t-1) .077∗∗ .077∗∗ .081∗∗∗ .078∗∗ .081∗∗ .079∗∗ .081∗∗∗ .068∗∗ .085∗∗ .079∗∗ .083∗∗

(.030) (.031) (.031) (.031) (.034) (.032) (.031) (.027) (.043) (.031) (.034)
Population Out-of-State (log, t-1) –14.692 –13.316

(28.498) (28.999)
Population Out-of-State Wgt. (log, t-1) –3.712

(2.683)
US Population (log, t-1) –13.937

(8.800)
R&D Procurement (log, t-1) –.003

(.018)
Federally-Financed R&D (log) –.020 –.024∗∗

(.012) (.012)
R&D User Costs (log) –.390 –.384

(.895) (.955)
Graduates in S&E (log) .235 .222∗

(.156) (.135)
Federal Aid to State (log) –.097 –.087

(.141) (.134)
Firm Lobbying Spending (log) –.001

(.011)
Non-R&D Procurement (log, t-1) –.029 –.034 –.064∗∗ –.026 –.010 –.027 –.024 –.001 .018 –.025 –.010

(.037) (.037) (.030) (.036) (.035) (.037) (.036) (.033) (.035) (.037) (.037)
Population (log, t-1) .709 1.227∗∗∗ 1.014∗∗ .990∗∗ .991∗∗ 1.058∗ .871∗∗ .438 1.649∗∗ 1.071∗∗ .716

(.758) (.463) (.464) (.460) (.463) (.557) (.423) (.628) (.799) (.508) (.818)
State Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes
Observations 525 514 525 525 521 525 525 516 298 525 521
States 51 50 51 51 51 51 51 51 44 51 51
R-squared (within state) .03 .05 .08 .03 .04 .03 .04 .01 .05 .04 .05

∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01

Notes: In Column (1), we proxy out-of-state markets by out-of-state population (that is, US population minus population of the respective state). In
Column (2), we include weighted out-of-state population, using the share of commodities that each state trades with any other destination state in the origin
state’s total commodity trade volume as weights. The number of observations decreases due to the unavailability of trade data for DC. In Column (3),
we replace year dummies by linear and quadratic time trends and the national GDP to control for aggregate demand shocks to private R&D. In Column
(4), we include federal R&D procurement in a state. In Column (5), federally sponsored company R&D, as reported in the SIRD, contains R&D subsidies,
the amount of work done within the scope of R&D contracts with the government, and the R&D portions of non-R&D procurement contracts. In Column
(6), we account for R&D tax credits and corporate income tax rates by including R&D user costs (Moretti and Wilson, 2014). In Column (7), we add the
number of graduates in science and engineering in a state. In Column (8), we add the share of the GDP in 52 industries in a state’s total GDP. Detailed
industry-level GDP data is missing in DC in some years. In Column (9), we include firms’ lobbying spending. Data on lobbying spending for years after
2006 are not available. Some states do not publish annual information on firm lobbying spending throughout the observation period. Alabama, Arkansas,
New Hampshire, New Mexico, and Rhode Island do not publish any spending data related to lobbying. Federal aid to state in Column (10) is defined as the
amount of federal government grants and other payments to state and local governments made during a fiscal year. In Column (11), all main controls are
simultaneously included. All monetary variables are measured in constant USD (base year 2000). Unless noted otherwise, we use the aggregate GDP deflator
for the year 2000 to express variables in prices of 2000. All regressions control for state and year fixed effects. Standard errors (reported in parentheses) are
robust to panel (state) heteroskedasticity and within-state autocorrelation. Data sources: BEA, FPDS-NG, Moretti and Wilson (2014), SIRD, US Census
Bureau, US Center for Public Integrity.
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Figure 3: Outlier detection
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Notes: Plot based on a regression with all main control variables (see Table 2, Column
(11)). The lines on the chart show the average values of leverage and the (normalized)
residuals squared. Points above the horizontal line have higher-than-average leverage (that
is, influence on the regression line); points to the right of the vertical line have larger-than-
average residuals. Data sources: BEA, FPDS-NG, Moretti and Wilson (2014), SIRD, US
Census Bureau.

A number of additional exercises, not shown, further confirm the robustness
of the positive association between the technological content of government
procurement and private R&D. For instance, we use the GDP in absolute or
per capita terms instead of population to capture the effect of market size on
private R&D.39 Further, as mentioned above, private R&D data are sometimes

39 Data on the real GDP by state are obtained from the BEA and deflated using the state-
specific deflator for the year 2000, which better reflects the within-state composition of
industries than the aggregate GDP deflator (BEA, 2006).

29



missing due to disclosure restrictions when the number of surveyed firms in a
state is small. We thus estimate a Heckman selection model to account for
a potential bias due to non-random missing R&D expenditures data.40 We
also replace the level of private R&D as the dependent variable with R&D
intensity, defined as the share of company-funded private R&D in the GDP.

Finally, our baseline FE regressions are likely to capture short-term ef-
fects of a change in the high-tech procurement share on private R&D (that is,
transitional dynamics), rather than long-term effects. Although this is con-
sistent with the theoretical model, which suggests that the positive influence
of the technological intensity of procurement on private R&D holds along the
balanced-growth path and outside the steady state, assessing the long-term ef-
fects on R&D is important for the policy implications of our results. Therefore,
we estimated regressions using variables averaged over five-year and three-year
intervals, respectively. In the specification with all main controls (analogous
to Table 2, Column (11)), the elasticity of private R&D with respect to the
high-tech procurement share was 0.174 (significant at 5%) in the specification
with five-year averages and 0.123 (significant at 10%) in the specification with
three-year averages. To gauge the long-term effects of the high-tech procure-
ment share, we also estimated a dynamic model including the lagged depen-
dent variable and applying a Bias-Corrected Least Squares Dummy Variable
(LSDVC) estimator (Wilson, 2009). We found a long-term elasticity of 0.085,
significant at 5%.41 We thus conclude that changing the technological compo-
sition of government procurement affects private R&D both in the short-term
and in the long-term.

5.3 Instrumental-Variable Estimation

In Section 5.2, we conducted a wealth of tests to prove the robustness of
the baseline FE results to further R&D determinants and various sources of
spurious correlation. However, we cannot rule out that there are further con-

40 In the Heckman procedure, we use the number of firms responding to the SIRD survey
as excluding restriction.

41 System GMM estimations yielded qualitatively similar results.
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founding factors omitted from the analysis. For instance, as mentioned in
Section 3, there might be (unobserved) state specific policies or regulations af-
fecting both private R&D and high-tech procurement (omitted variable bias)
or the likelihood that firms are awarded a procurement contract might depend
on their R&D capabilities (reverse causality). We address these endogeneity
concerns by employing an IV approach that exploits an exogenous part in the
variation of the high-tech procurement share to estimate its impact on private
R&D.

We use as instrument the number of senators from a given state who are
members of the Senate Appropriations Committee, which decides on payments
to agencies that then disburse the money, but also controls the funding of in-
dividual (procurement) projects.42 Our instrument relies on the idea that
politicians try to channel public money to their constituencies in order to re-
ward their voters and maximize their chances of reelection (Mayhew, 1974;
Levitt and Snyder, 1997). As it is generally difficult to deliver a direct mone-
tary payback, politicians attempt to divert public investments or procurement
contracts to their states (Atlas et al., 1995; Mayer, 1995; Levitt and Sny-
der, 1997; Aghion et al., 2009; Cohen, Coval and Malloy, 2011). For instance,
Dalpé (1994) argues that politicians consider gaining electoral support through
procurement to be a particularly promising strategy because procurement de-
cisions are more often publicized than are other types of government spending.
Moreover, procurement spending can be “targeted” in the sense that politi-
cians can fund particular projects, for instance, infrastructure projects, in their
constituency. Other forms of federal spending are formula based, meaning that
it is by no means certain that a politician’s own constituents would benefit
(Aghion et al., 2009). Not surprisingly, newspaper accounts frequently refer to

42 We do not use information from the House Appropriations Committee because, although
being one of the most influential among the committees of the House, it is regarded as
less powerful than the Senate Appropriations Committee and often assumes merely a
control function (Shepsle and Weingast, 1987). Moreover, there are historical examples
(for instance, during the Nixon era) showing that the power and functioning of the House
Appropriations Committee can seriously be undermined, which has not been happened
for the Senate Appropriations Committee (Livingston, Dodd and Schott, 1979; Kiewiet
and McCubbins, 1988; Kiewiet and Krehbiel, 2002).
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government procurement as “pork barrel” spending Wheeler (2004). Gener-
ally, our choice of instrument is based on previous literature that uses political
conditions to isolate exogenous variation in the distribution of government
spending (among others, Aghion et al., 2009; Fishback and Kachanovskaya,
2010; Cohen, Coval and Malloy, 2011).

However, when taking advantage of their position, senators who are mem-
bers of the Appropriations Committee also influence the technological compo-
sition of federal procurement in their states. The reasons is that politicians
prefer to fund projects that are visible and effective in terms of raising income
and creating (or securing) jobs in the short run, because voters are likely to
reward a politician’s contribution to the local economy at the ballot box if
yields noticeable benefits before the election (e.g., Arnold, 1979; Cohen and
Noll, 1991; Dalpé, 1994). Examples in this respect are public infrastructure (for
instance, bridges, highways, recreation areas) and social facilities (for instance,
schools, retirement homes, libraries). These projects are typically low-tech in
nature. One could argue that politicians are more interested in technology-
intensive procurement projects because such projects are expected to increase
performance and competitiveness. However, high-tech projects often have an
uncertain outcome and become effective only in the long run, if at all. More-
over, high-tech industries typically employ a rather small portion of the work-
force43, which means that only a fraction of a state’s population/voters would
reap income and employment benefits from additional government contracts.
Indeed, Table A.3 in the Appendix shows that states gaining seats on the Sen-
ate Appropriations Committee receive relatively more low-tech procurement
contracts.

The instrument can be considered exogenous, because both the arrival of
vacancies and vacancy filling on the Appropriations Committee are indepen-
dent of a state’s characteristics or its current economic strength (for a similar
reasoning, see Aghion et al., 2009, 2010). Membership on the Appropriations

43 According to the US Census Bureau, employment in high-tech establishments as share
of total employment was only 11.5% in 2008. See Science and Engineering Indicators
2012 for more details.
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Committee is highly coveted, so vacancies almost solely arise due to personal
(mostly health-related) reasons, drop off from the Senate, retirement, signifi-
cant upgrade in office (president, secretary, etc.), or death. Thus, the timing
of new assignments to the Appropriations Committee is unrelated to the char-
acteristics of any particular state. At the same time, appointment to the
Appropriations Committee is based on two main conditions.44 First, party
affiliation plays an important role, as parties are allocated seats in the Senate
Appropriations Committee in proportion to their share of seats in the Senate
and senators affiliated with the majority party are first to fill a vacancy. The
second crucial factor for vacancy filling is seniority, which is mainly determined
by age and years in public office. For instance, a senator from an economically
less important state (say, North Dakota) who has been in office longer than a
senator from an economically powerful state (say, California) is more likely to
be appointed to the Senate Appropriations Committee when a vacancy arises.

Figure 4 illustrates state representation in the US Senate Appropriations
Committee in the period 1998 to 2008.45 We observe that twenty states always
had one member appointed to the committee throughout the entire period of
observation, while fifteen states were not represented at all. Sixteen states
experienced changes in the number of senators on the committee, while the
overall probability to gain a member was as high as the probability to lose a
member. Some states also had multiple changes in the number of committee
members. Washington was the only state with two members on the committee
in the beginning of our observation period.

44 See also http://www.senate.gov/CRSReports/crs-publish.cfm?pid=%26*2%3C4P%5C%3B8%0A
and http://faculty.washington.edu/jwilker/353/353Assignments/SenateCommitteeAssignmentProcess.pdf.

45 The relevant period is 1998 to 2008 because, since the high-tech procurement share enters
the regressions with a one-year lag (see Section 3), we lag the instrument accordingly.
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Figure 4: Number of Members in Senate Appropriations Committee across
States 1998-2008
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Notes: DC has no senators.

The results of the IV estimation provide support for a causal interpreta-
tion of the relationship between the technological content of federal procure-
ment and private R&D (see Table 3). We estimate two specifications, one
including only population as control (Columns (1) and (2)) and one with a
full set of control variables (Columns (3) and (4)). The first-stage results in
the odd columns suggest that the instrument is indeed a relevant predictor
of the technological content of federal procurement; the estimated coefficient
is statistically significant, with an F-statistic of 12.4 (Column (1)) and 9.7
(Column (3)), respectively.46 The second-stage coefficients on the high-tech
46 A F-statistic larger than 10 is often suggested as an indication of the reliability of in-

ferences based on the 2SLS estimator (for a discussion, see Staiger and Stock, 1997 and
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procurement share, shown in the even columns, are positive and statistically
significant at 5% or better.47

5.4 Disentangling the Effect of the High-Tech Procure-
ment Share

In the theoretical model, the elasticity of R&D with respect to government
demand is higher in high-tech industries than in low-tech industries. Accord-
ingly, when government purchases shift from low-tech to high-tech industries,
the increased R&D in high-tech industries outweighs the R&D foregone in
low-tech industries. Thus, in the empirical analysis above (see equation (14)),
we focus on the net effect of redistributing government procurement from low-
tech to high-tech industries, and, in line with the theoretical expectations,
find that the net effect is positive. However, in order to better understand the
mechanisms at work and to learn more about the R&D effects of government
procurement in low-tech vs. high-tech industries, we now decompose total
government procurement. Specifically, we estimate the following equation:

logR&Dit = βHT logGHT
i t−1 +βLT logGLT

i t−1 +γ logPOP i t−1 +X ′itθ+ξi+νt+uit,

where GHT
i t−1

(
GLT
i t−1

)
denotes federal procurement in high-tech (low-tech) in-

dustries in state i in year t − 1. The vector Xi t contains a set of (log-
transformed) state-level control variables.48 According to the mechanism in
the theoretical model, we expect βHT to be positive and larger than βLT .

Table 4 shows the estimation results. In line with the theoretical model, we
find that additional procurement in high-tech industries increases private R&D
at any level of procurement in low-tech industries; the estimated coefficient
on high-tech procurement is positive and significant at 5%. The coefficient

Stock, Wright and Yogo, 2002).
47 Durbin-Wu-Hausman χ2 tests (at the bottom of the table) indicate no statistically sig-

nificant difference between the FE and the IV estimator.
48 See notes in Table 4 for an overview of the included controls and Section 3 for details of

the empirical specification.
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Table 3: Technological Intensity of Government Demand and Private R&D: IV Estimates

Dependent Variable: Company R&D (log)
No Controls No Controls Controls Controls
First Stage Second Stage First Stage Second Stage

(1) (2) (3) (4)
Seats Appropriations Committee (t-1) –.222∗∗∗ –.222∗∗

(.063) (.071)
High-Tech Share (log, t-1) .219∗∗ .263∗∗∗

(.109) (.087)
Federally-Financed R&D (log) .029 –.030∗∗

(.034) (.015)
R&D User Costs (log) .532 –.544

(1.210) (.998)
Graduates in Science and Engineering (log) –.312 .279∗

(.224) (.160)
Federal Aid to State (log) –.071 –.078

(.127) (.131)
Population Out-of-State (log, t-1) –53.626 –4.719

(53.368) (32.227)
Non-R&D Procurement (log, t-1) –.043 –.003

(.012) (.045)
Population (log, t-1) -1.345 1.239∗∗ –2.196 1.003

(1.162) (.513) (2.094) (.906)
State Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Observations 525 525 521 521
States 51 51 51 51
F-statistic (excluded instrument) 12.36 9.68
Durbin-Wu-Hausman test p-value 0.35 0.20

∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01

Notes: Two-stage least squares estimation. Seats Appropriations Committee is the number of senators a state has on the US Senate
Appropriations Committee. See Table 2 for details on the control variables. All regressions control for state and year fixed effects.
Standard errors (reported in parentheses) are robust to panel (state) heteroskedasticity and within-state autocorrelation. Data
sources: BEA, FPDS-NG, Moretti and Wilson (2014), NSF, SIRD, US Census Bureau.

36



on low-tech procurement is statistically not significantly different from zero
but has a negative sign. A possible explanation for this negative coefficient
might be that, by raising its purchases in low-tech industries, the government
encourages activities in industries that perform little, if any, R&D. If low-R&D
industries grow at the expense of high-R&D industries, the aggregate level of
R&D may decrease over time. However, although interesting in its own right,
a proper investigation of the impact of government demand on the growth and
decline of industries is beyond the scope of the paper.

The coefficients of high-tech and low-tech procurement are jointly signif-
icant (p = 0.07) and one cannot reject that the coefficients are equal and
opposite in sign (p = 0.79). The latter result suggests that when the govern-
ment increases procurement in high-tech and low-tech industries proportion-
ally, aggregate private R&D will not react. However, in the case of a budget-
neutral redistribution of procurement from low-tech to high-tech industries,
the positive coefficient on high-tech procurement and the negative coefficient
on low-tech procurement even suggest a “double dividend” for private R&D.

Overall, these results confirm that an increase in government market size
per se does not induce additional private R&D; what matters is the types of
products and services purchased by the government.
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Table 4: Separating the R&D Effects of High-Tech Procurement and Low-
Tech Procurement

Dependent Variable: Company R&D (log)
(1) Hypothesis Tests

High-Tech Non-R&D Procurement (log, t-1) .056∗∗ H0: βHigh-tech = 0 & βLow-tech = 0 :
(.027) F = 5.23 (p = 0.07)

Low-Tech Non-R&D Procurement (log, t-1) –.046 H0: βHigh-tech = −βLow-tech :
(.032) F = 0.07 (p = 0.79)

Population (log, t-1) .707
(.808)

Controls Yes
State Fixed Effects Yes
Time Fixed Effects Yes
Observations 521
States 51
R-squared (within state) .05

∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01

Notes: Fixed-effects estimation. Controls include federally-financed R&D, R&D user costs,
graduates in S&E, federal aid to state, and out-of-state population (lagged by one year). All
regressions control for state and year fixed effects. Standard errors (reported in parenthe-
ses) are robust to panel (state) heteroskedasticity and within-state autocorrelation. Data
sources: BEA, FPDS-NG, Moretti and Wilson (2014), NSF, SIRD, US Census Bureau.

6 Conclusions

This paper investigates the role of government demand in innovation. The
evidence we provide contributes to the recent discussion among researchers and
policymakers on whether and how government procurement can be utilized as
an innovation policy tool (see Edler and Georghiou, 2007, and the references
cited therein). We theoretically show that government procurement can induce
additional private R&D; however, these R&D effects depend on the types of
products and services purchased. Specifically, an increase in the size of the
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market for high-tech products translates into higher returns to innovation,
providing additional incentives for firms to innovate, which raises the level of
private R&D in the economy.

We empirically test the model’s predictions using unique US state-level
panel data on federal procurement in the period 1999–2009. We find that
the allocation of procurement across industries indeed influences private R&D
activities. Keeping the total amount of government procurement spending
constant, a shift of $1 in government purchases from low-tech to high-tech
industries is associated with an average increase in company-funded R&D of
21¢. We also show that an increase in high-tech procurement induces addi-
tional private R&D at any level of procurement in low-tech industries. These
findings are robust to (i) controlling for further R&D determinants and various
sources of spurious correlation; (ii) dropping high-leverage observations; and
(iii) changing the construction of main variables. Finally, an IV estimation
that uses political conditions to identify exogenous variation in government
spending supports a causal interpretation of the positive relationship between
the technological content of government procurement and private R&D.

A main implication of our findings is that the government should not be
agnostic about the inter-industry composition of its purchases. If high-tech
and low-tech solutions to the same problem are available, public authorities
might consider that purchasing the high-tech solution has the additional ben-
efit of encouraging private R&D. Resulting from a change in the procurement
composition while keeping the total level of procurement constant, this R&D-
inducement effect is even budget-neutral.

However, further analysis is needed before we can recommend to include
public procurement into the innovation-policy portfolio. First, the fundamen-
tal aim of public procurement is to ensure that the government can sustain,
or even improve, its core functions. If low-tech and high-tech products are not
(close) substitutes, then purchasing from high-tech industries might hamper
the functioning of the public sector. Moreover, public procurement, being part
of general demand, might influence not only the pace, but also the direction of
R&D (e.g., Acemoglu and Linn, 2004). As governments typically have a poor
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track record for picking winning technologies (among others, Cabral et al.,
2006; Cowan, 1990; Edquist and Zabala-Iturriagagoitia, 2012; Yang and Op-
penheimer, 2007), utilizing government procurement as an innovation-policy
tool may well guide the direction of research away from socially beneficial tech-
nologies. Moreover, our analysis neglects potentially costly (labor-)adjustment
processes and the reallocation of resources as a consequence of structural
change due to a change in the composition of government purchases. Finally,
any reasonable policy advice requires a cost-benefit comparison of procurement
with other innovation-policy tools, such as R&D subsidies and R&D tax cred-
its. These are all fruitful avenues for future research to aid our understanding
of the role of government procurement in innovation.
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A Appendix

A.1 Determining the Unique Ratio Between ε1 and ε2

In this Appendix, we derive the relation between ε1 and ε2 for the public
demand rule in (9) to be feasible. Recall that, by definition, the following
holds:

´ 1
0 G (ω)dω ≡ Ḡ. Substituting the public demand rule for G(ω) yields:

1ˆ

0

∞̂

1

(
Ḡ+ γε

)
g(λ)dλdω

=
1ˆ

0


∞̂

1

Ḡg(λ)dλ+ γ


1

1−κˆ

1

−ε1g(λ)dλ+
∞̂

1
1−κ

ε2g(λ)dλ


 dω, (A.1)

where g(λ) is the Pareto density function with a scale parameter equal to one
and a share parameter equal to 1/κ. According to (8), we can express g(λ) as
1/κλ−(1+κ)/κ, which allows us to rewrite (A.1) as:

1ˆ

0


1
κ
Ḡ

∞̂

1

λ−
1

1−κdλ+ γ

κ


1

1−κˆ

1

−ε1λ
− 1

1−κdλ+
∞̂

1
1−κ

ε2λ
− 1

1−κdλ


dω.

Solving the integral above gives:

1ˆ

0

G(ω)dω = Ḡ+ γ
{
ε1
[
−1 + (1− κ) 1

κ

]
+ ε2 (1− κ)

1
κ

}
. (A.2)

By definition, the RHS of (A.2) is equal to Ḡ. It is now straightforward to
show that this relationship determines the unique ratio between ε1 and ε2,
which is equal to:
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ε1

ε2
= (1− κ) 1

κ

1− (1− κ) 1
κ

. (A.3)

Because the RHS of (A.3) is strictly positive, but smaller than one, it follows
that ε1 < ε2.

52



A.2 Expected Profit Stream of an Industry Leader

Taking into account (5), the expected value of the profit flow to the winner of
an R&D race in industry ω at time t can be written as (suppressing time and
industry arguments for notational convenience):

πe =
∞̂

1

λ− 1
λ

L (c+G)g(λ)dλ. (A.4)

Substituting for the Pareto density function, g(λ), and for public demand
spending, G(ω), by using (8) and (9), equation (A.4) becomes:

πe =
∞̂

1

L

κ

λ− 1
λ

λ−
1+κ
κ

(
c+ Ḡ+ γε

)
dλ. (A.5)

The term (λ− 1) (1/λ)λ−(1+κ)/κ can be simplified to (λ− 1)λ−2−1/κ. Hence,
solving the integral on the RHS of (A.5) yields:

πe = κ

1 + κ
L
{
c+ Ḡ+ γ

[
ε1
(
−1 + 2 (1− κ)

1
κ

)
+ ε22 (1− κ)

1
κ

]}
. (A.6)

Using (A.3) in Appendix A.1 to eliminate ε1, the integral above boils down to:

πe = κ

1 + κ
L

[
c+ Ḡ+ γε2

(
1

1− (1− κ) 1
κ

− 1
)]

. (A.7)

Notice that 0 < 1−(1− κ)1/κ < 1 for all κ ∈ (0, 1) and, thus, 1
/[

1− (1− κ)1/κ
]
>

1, leaving the term in round brackets on the RHS of (A.7) positive. Rearrang-
ing (A.7) eventually allows us to write the expected profit stream as:

πe = κ

1 + κ
L
(
c+ Ḡ+ γΓ

)
, (A.8)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0. Because the RHS of (A.8) does

not depend on industry-specific variables, πe denotes the average expected
profits of an industry leader.
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A.3 Labor-Market Equilibrium

Labor demand in manufacturing equals aggregate demand from both private
and public consumers (recall that the production function in manufacturing
reads Y = LY and that we assume market clearing). The total employment
in manufacturing is then given by:

LY (t) =
1ˆ

0

[
c(t)L(t)
λ (ω, t) + G (ω)L(t)

λ (ω, t)

]
dω

=
1ˆ

0

L(t)

c(t)
∞̂

1

λ−1g (λ)dλ+
∞̂

1

G (ω)λ−1g (λ)dλ

 dω.
Using the Pareto density function given in (8), as well as the public demand
rule as specified in (9) and (A.3), the total employment necessary to satisfy
private and public demand can be calculated as:

LY (t) = L(t)c(t) + Ḡ− γκΓ
1 + κ

.

An equation for the R&D labor can be derived from solving (6) for the R&D
input of a firm in industry ω and then aggregating over the continuum of
industries ω ∈ [0, 1]. Noting further that the industry-level innovation rate
I(ω, t) is the same across industries at each point in time, R&D labor becomes:

LI(t) = I(t)X(t)
A

.

Labor-market clearing implies that L(t) = LY (t) + LI(t) is always fulfilled,
which, when slightly rewritten, gives (12).
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A.4 Existence and Uniqueness of the Steady State

Here, we solve for the steady state of the economy, in which all endogenous
variables grow at a constant (although not necessarily at the same) rate and
research intensity I(t) is common across industries. We already established
in the main text that a constant growth rate constrains I, ẋ/x, and ċ/c to
be constant over time, while the latter implies r(t) = ρ. Equations (7), (11),
and (12) represent a system of three equations in three unknowns x, c, and I.
Solving this system of equations allows us to uniquely determine the steady-
state values for all endogenous variables.

We first derive an expression for the equilibrium research intensity, I∗.
Taking the logarithm of the RHS of (6) and differentiating with respect to
time while using (7) yields:

I∗ = n

µ
. (A.9)

According to equation (A.9), the research intensity in the steady-state is com-
pletely pinned down by the population growth rate, n, and the difficulty of
R&D, µ.

Having determined the equilibrium value of I, we are now in the position to
solve for the steady-state values of x and c. Given (A.9) and that r = ρ holds
along the steady state, the R&D equilibrium condition (11) can be written as:

x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
ρ+ n

(
1
µ
− 1

) . (A.10)

The resource constraint (12) becomes:

1 = c(t) + Ḡ− γκΓ
1 + κ

+ n

ηA
x(t). (A.11)

Equation (A.10) is an upward sloping line in the (c, x) space while (A.11) is
a downward sloping linear function in the (c, x) space. The necessary and
sufficient condition for both lines to have a unique and positive intersection is
given by Ḡ < 1. Solving the system of linear equations in (A.10) and (A.11)
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by applying Cramer’s rule uniquely determines the steady-state values of x
and c as:

x∗ = Aκµ(1 + γΓ)
n(1 + κ− µ) + µρ

, (A.12)

c∗ = µρ(1 + κ+ γκΓ− Ḡ)− n[Ḡ(1 + κ− µ) + (1 + κ)(µ− 1) + γκµΓ]
n(1 + κ− µ) + µρ

.

(A.13)
Finally, we calculate the steady-state growth rate of the economy. Because
we refrain from capital accumulation, the concept of growth in the model
relates to growth in each individual’s utility. This property is shared by all
Schumpeterian growth models in which firms’ R&D efforts are directed toward
increasing the product quality, and the per capita consumption does not change
in equilibrium. However, even if the amount of goods consumed per person
remains constant, the individual utility in (2) augments when R&D turns out
to be successful. To obtain an explicit expression for the utility growth rate,
we substitute for consumer demand in (2) by using (3):

log u(t) =
1ˆ

0

log
[

c(t)
λ (ω, t)

]
dω +

1ˆ

0

jmax (ω, t) log [λ (ω, t)] dω, (A.14)

where
´ 1

0 j
max (ω, t)dω is a measure of the number of quality improvements ag-

gregated over all industries, ω ∈ [0, 1]. The index jmax increases when firms are
successful in innovating and engage in R&D in all industries throughout time
in any steady-state equilibrium. In each industry ω, the (Poisson distributed)
probability of exactly m improvements within a time interval of length τ can
be calculated as:

f(m, τ) = (Iτ)m e−Iτ
m! .

Following Davidson and Segerstrom (1998),
´ 1

0 j
max (ω, t)dω then equals tI.
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Taking this and (A.9) into account, differentiating (A.14) with respect to time
yields the following steady-state growth rate of the per capita utility:49

u̇(t)
u(t) ≡ g∗ = n

µ
κ. (A.15)

This completes the characterization of the steady state of this economy.

49 Notice that the first integral on the RHS of (A.14) is constant along the balanced-growth
path. We further exploit the fact that quality jumps follow a Pareto distribution; thus,
using (8),

´ 1
0 log [λ (ω, t)] dω = κ.
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Table A.1: High-Tech Industries

Four-digit NAICS code Description
3254 Pharmaceutical and medicine manufacturing
3341 Computer and peripheral equipment manufacturing
3342 Communications equipment manufacturing
3344 Semiconductor and other electronic component manufacturing

3345 Navigational, measuring, electro-medical, and control instruments
manufacturing

3364 Aerospace product and parts manufacturing
5112 Software publishers
5161 Internet publishing and broadcasting
5179 Other telecommunications
5181 Internet service providers and Web search portals
5182 Data processing, hosting, and related services
5413 Architectural, engineering, and related services
5415 Computer systems design and related services
5417 Scientific research-and-development services

Notes: High-tech industries are identified using the classification provided by the US Bureau of Labor Statistics (Hecker, 2005).
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Table A.2: Descriptive Statistics and Pairwise Correlations of Main Variables

Descriptive statistics Pairwise correlation (variables in logs)
Mean Std. Dev. Min Max 1) 2) 3) 4) 5) 6) 7)

1) Company-funded R&D
expenditures (billions $2000)

3.637 6.577 0.019 49.616 1

2) Federal non-R&D
procurement (billions $2000)

4.306 5.655 0.046 42.110 0.597 1

3) Federal non-R&D
procurement in high-tech
industries (billions $2000)

1.796 2.883 0.003 17.708 0.603 0.904 1

4) Federal non-R&D
procurement in all other
industries (billions $2000)

2.507 2.958 0.042 25.894 0.550 0.968 0.785 1

5) High-tech procurement
share (%)

32.363 19.515 1.520 84.563 0.377 0.406 0.758 0.201 1

6) GDP (billions $2000) 220.564 258.243 16.714 1,593.577 0.889 0.776 0.747 0.745 0.410 1
7) Population (millions) 6.030 6.523 0.492 36.962 0.860 0.728 0.702 0.702 0.363 0.973 1

Notes: This table shows the descriptive statistics for the main variables used in the empirical analysis for 50 US states and DC in
the period 1999–2009. All values are reported for our main estimation sample (525 observations). See Table 1 for details. High-tech
procurement share is federal non-R&D procurement in high-tech industries as a share of total federal non-R&D procurement in the
private sector. All monetary values are expressed in constant dollars with the base year 2000.
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Table A.3: Instrument Validity

Dependent Variable: Government Non-R&D Procurement (log, t-1)
Low-Tech High-Tech

(1) (2) (3) (4)
Seats Appropriations Committee (t-1) .107∗∗ .103∗∗ –.255∗∗∗ –.251∗∗∗

(.051) (.049) (.082) (.089)
Federally-Financed R&D (log) .053∗∗∗ .086∗∗

(.020) (.038)
R&D User Costs (log) .025 .442

(.462) (1.904)
Graduates in S&E (log) –.057 –.481∗

(.151) (.271)
Federal Aid to State (log) .065 –.076

(.154) (.224)
Population Out-of-State (log, t-1) –29.597∗ –94.514

(17.556) (60.619)
High-Tech Non-R&D Procurement (log, t-1) .100∗∗ .081∗

(.050) (.045)
Low-Tech Non-R&D Procurement (log, t-1) .245∗ .195∗

(.130) (.112)
Population (log, t-1) .670 .099 –1.501 –2.951

(.569) (.776) (1.355) (2.365)
State Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Observations 525 521 525 521
States 51 51 51 51
R-squared (within state) .03 .06 .05 .08

∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01

Notes: Fixed-effects estimations. The dependent variable is federal non-R&D procurement
in low-tech industries (Columns (1)–(2)) and in high-tech industries (Columns (3)–(4)),
respectively. Seats Appropriations Committee is the number of senators a state has on
the US Senate Appropriations Committee. See Table 2 for details on the included control
variables. All regressions control for state and year fixed effects. Standard errors (reported in
parentheses) are robust to panel (state) heteroskedasticity and within-state autocorrelation.
Data sources: BEA, FPDS-NG, Moretti and Wilson (2014), NSF, SIRD, US Census Bureau.
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