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Abstract. We investigate a problem posed by Poreda on the be-
haviour of the strong uniqueness constant with increased polynomial
degree. It has been conjectured by Bartelt and McLaughlin that this
constants tends to zero for all non-polynomial functions. In this paper,
we give evidence for this and prove a special result, which we conjecture
to be a worst case result.

§1 Introduction to the Problem

Let us first introduce the necessary notations. We donote by

en(f) = d(f,Pn) := min
pn∈Pn

‖f − pn‖.

the error of best approximation with respect to the space Pn of poly-
nomials of degree n. The norm being the sup-norm

‖g‖ = ‖g‖[a,b] := sup
x∈[a,b]

|f(x)|

and denote the best approximation by P ∗nf ; i.e.,

‖f − P ∗nf‖ = en(f),

Then, Freud proved, that for some smallest constant Ln(f)

‖P ∗nf − P ∗ng‖
‖f − g‖ ≤ Ln(f)

and due to Newman and Shapiro [9] for some largest constant γn(f)

‖f − qn‖ ≥ ‖f − p∗n(f)‖+ γn(f)‖qn − P ∗nf‖, for all qn ∈ Pn.

Furthermore

Ln(f) ≤ 2

γn(f)
.

The proof of this and other details may be found in the book of Cheney
[3].
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Poreda [8] asked how the strong uniquness constant behaves as
n →∞. Bartet and McLaughlin [2] conjectured that

lim inf
n→∞

γn(f) = 0

for all non-polynomial f .
We do not have enough space here to cover all results, which

throw light on this conjecture. The simplest and yet most useful esti-
mate is due to Blatt [1]. He proved that

γn(f) ≤ 1

n + 1
,

if f −p∗n(f) has exactly n+2 alternation points. This can be extended
a little bit to extramal error sets with slightly more points (see [7]).
Moreover, using a real Carathéodory-Fejér method of Gutknecht and
Trefethen one can use this result to prove that the conjecture is true
for functions, which are analytic in a certain neighborhood of [−1, 1]
(see [5] and [6]).

We will need the characterization of Bartelt and Mclaughlin

γn(f) = inf {h ∈ lR : There is a p ∈ Pn,

‖p‖ = 1 with snf(x)p(x) ≤ h for x ∈ En(f)}.

where snf(x) = sign (f − p∗n)(x) and En(f) is the extremal set of the
error function f − p∗n. For a subsequence, En(f) will consist of n + 2
subsets E0 < . . . < En+1, such that the error function oscillates in sign
on these subsets. We choose points

x0 = −1 ≤ E0 < x1 < E2 < . . . < En+1 ≤ xn+2 = 1

and fix a function σn with

σn(x) = (−1)i, x ∈ (xi, xi+1).

Then 0 is the best approximation of σn with respect to Pn and

γn(f) ≤ γn(σn)

by the chracterization above. Thus we only investigate such extremal
functions. We will call such a function a signum function of order n+2.

Conjecture 1.

γn(f) ≤ C

log n

for some constant C > 0 independend of n and f .
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Strong uniqueness does hold for approximation in the space C2π

of 2π-periodic continuous functions with respect to Tn, the set of all
trigonometric polynomials of degree n. We denote the corresponding
strong uniqueness constant by γ̂(f).

Let us explain, why it suffices to prove the conjecture for the
trigonometric case. For functions g : [−1, 1] → lR we set

ĝ(t) = g(cos t), t ∈ [0, 2π).

We start with a signum function σn of order n+2 on [−1, 1]. Then the
best approximation to σ̂n with respect to Tn on [0, 2π) is 0, because σ̂n

has 2n+2 alternating extremal points. By the characterization above,
we find a function v ∈ Tn with ‖v‖ = 1 and

v(t)σ̂n(t) ≤ γ̂(σ̂n).

Take w(t) = (v(t) + v(−t))/2, and p ∈ Pn such that p̂ = w. Then

‖p‖ ≥ 1− γ̂(σ̂n)

2
,

and
p(x)σn(x) ≤ γ̂(σ̂n).

We get the following Lemma

Lemma 1. For any sign function σn on [−1, 1] of order n, we get

γn(σn) ≤ 2γ̂(σ̂n)

1− γ̂(σ̂n)
.

§2 Results

The following result takes care of an extremal case.

Theorem 1. Let sn be the trigonometric sign function, defined as

sn(t) = (−1)ν , t ∈
[

νπ

n + 1
,
(ν + 1)π

n + 1

)
for all t ∈ [0, 2π). Then

C1

log n
≤ γ̂n(sn) ≤ C2

log n

for constants 0 < C1 < C2.
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The rest of this section is devoted to the proof of this Theorem.
Let vn ∈ Tn be the trigonometric polynomial of maximal norm,

such that
vn(t)sn(t) ≤ 1

for all t. We may assume that this polyomial takes its norm at t0 ∈
[0, π/(n + 1)], where it is negative. Then the polynomial will max-
imize v(t0) under the restriction vn(t)sn(t) ≤ 1. By the theory of
semi-infinite optimization, there must be points tν ∈ [νπ/(n + 1), (ν +
1)π/(n + 1)] for ν = 1, . . . , 2n + 1 such that vn(tν) = (−1)ν . A simple
zero counting argument shows, that this maximization problem has a
unique solution, which is independend of the point t0. A symmetry
argument shows that it is symmetric to π/(2n + 2), where it takes its
norm.

We will now investigate

wn(t) = −vn(t + π/(2n + 2)), t ∈ [−π, π].

This is an even polynomial and takes its norm in 0. It maximizes wn(0)
among all polynomials with

(−1)νwn(t) ≥ −1, t ∈ Iν :=

[
νπ

2n + 2
,
(ν + 2)π

2n + 2

]
, ν odd.

We will study wn on [0, π]. On this interval, it is in Cn, the space
of all cosine polynomials of maximal degree n. We compare it to the
polynomial vn ∈ Cn defined by the n + 1 interpolation properties

vn(τν) = (−1)
ν−1
2 , τν =

νπ

2n + 1
, ν = 1, 3, 5, . . . , 2n + 1. (2.1)

Note τν ∈ Iν . By a simple zero counting estimate, we have

vn(0) > wn(0).

This will yield an upper estimate for wn and thus a lower estimate for
γ̂(sn).

We mention that we could now use well known results about the
best interpolation norm in the trigonometric case. But we need more
detailed information anyway.

Consider the polynomial φn ∈ Tn defined by

φn(t) = Re
z2n+1 − 1

(2n + 1)zn(z − 1)
= Re

z−n + . . . + zn

2n + 1
.

with z = eit. Setting

φν,n(z) = φn(z − τν) + φn(z + τν),
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we see, that we have just constructed the Lagrange polynomials for
the interpolation problem (2.1). To estimate |φν,n(0)|, we need need
to compute φn at odd multiples of dn := π/(2n + 1). Setting

zν,n = eiνdn

we get for ν odd

|φn(νdn)| = 2

2n + 1

∣∣∣∣Re

(
zn

ν,n

zν,n − 1

)∣∣∣∣ ≤ 1

(2n + 1)|zν,n − 1| .

Since

|zν,n − 1| ≥ |νdn|
2

,

we get

|φn(νdn)| ≤ 2

νπ
.

Thus

|φν,n(0)| = 2|φn(τν)| ≤ 4

νπ
.

Summing up the Lagrange polynomials, we get

wn(0) ≤ vn(0)

= |φ1,n(0)|+ |φ3,n(0)|+ . . . + |φ2n+1,n(0)|
≤ D1 log(n)

with a constant D1 > 0, which does not depend on n.
We can also derive a lower estimate for vn(0). Since zn

ν,n → i for
n →∞, we get for n large enough and |νdn| ≤ π/2

|φn(νdn)| ≥ Im (zν,n − 1)

(2n + 1)|zν,n − 1|2

≥ 1

2(2n + 1)| sin(νdn)|

≥ 1

2(2n + 1)|νdn|

=
1

2πν
.

Thus we see
vn(0) ≥ D2 log(n),

and our estimate for vn(0) was sharp.
To get a lower bound for wn(0), we really need to construct a

polynomial hn ∈ Cn, which satisfies the conditions

(−1)νhn(t) ≤ 1 (2.2)

for
t ∈ [(2ν + 1)π/(2n + 2), (2ν + 3)π/(2n + 2)] ∩ [0, π].



6 R. Grothmann

for ν = −1, . . . , n. hn(0) will then be a lower estimate for wn(0).
We could use the polyonomial vn, properly scaled, for this pur-

pose, but the proofs get very technical. Thus we use instead the poly-
omials

un(t) =

nα∑
ν=1

φν,n(t),

with nα = [nα] (using the Gaussian bracket) for some 0 < α < 1 and
n big enough. Then with the same estimates as above, we still get

un(0) ≥ D3 log(n)

for some constant D3 > 0. Morevover, if we take some 0 < α < β < 1,
we have by the representation of φn

|un(t)| ≤ D4n
α−β ,

π

nβ
≤ |t| ≤ π.

Clearly
un(t) ≥ 1, t ∈ [0, π/(2n + 2)].

By elementary calculations, we see that absolute values of the deriva-
tives of φn taken in the zeros of φn

sν =
2νπ

2n + 1
, ν 6= 0

are monotonically decreasing. Using this, we get that

u′n(τ1) < 0, u′n(τ2) > 0, . . .

With a zero counting argument applied to u′n, we see that we only need
to estimate uν in the intervals

[νπ/(2n + 2), νπ/(2n + 1)]

for odd ν with ν ≤ nβ . On the right endpoint of this interval, we
have values ±1 or 0 by the interpolation property. Repeating the same
estimate as above, we can prove

‖un‖[0,π] ≤ D5 log n

for some constant D5 > 0. By the Markov inequality, we finally see
that un/2 for big enough n satisfies the inequalities (2.2).

This finishes the proof of the Theorem.



Poreda’s Problem 7

References

[1] H.-P. Blatt, Exchange Algorithms, Error Estimations, and Strong
Unicity in Convex Programming and Chebyshev Approximation,
in Approximation Theory and and Spline Functions, NATO ASI
series, Series C, Math. and Phys. Sciences, Vol. 136, Dordrecht,
1984.

[2] M. W. Bartelt and H. W. McLaughlin, Characterizations of strong
unicity in approximation theory, J. Approx. Theory 28 (1973),
255–260.

[3] E. W. Cheney: Introduction to Approximation Theory, McGraw-
Hill, New York, 1966.

[4] G. Freud, Eine Ungleichung für Tschebyscheff’sche Approximation-
sprobleme, Acta Scientarium Math. 19 (1958), 162–164.
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