MIDS LOGO

Welcome to the page of the Chair of Mathematics - Scientific Computing

The Scientific Computing group works on the development and analysis of methods in data science, in particular those based on applied harmonic analysis and functional analysis. Focus topics include signal processing, information theory, sampling theory, time-frequency analysis, quantization and machine learning.

For example, our group develops efficient methods to assemble (synthesize) from or decompose (analyse) functions or operators into well-understood basic building blocks. Analysis relies on the understanding of appropriately chosen basic components and on determining the weight of each component in a given signal. For example, a picture can be decomposed into patches of red, green, and blue of varying intensities. The dual operation is signal synthesis. Using the same building blocks as in the analysis step, we can assemble or reassemble (after transmitting and/or modifying coefficients) signals and transformations to our liking. Returning to our example, we could, starting from scratch, draw a picture by choosing patches of red, green, and blue and intensities freely.

In digital communications, synthesis and analysis are applied in succession. To transmit digital data through a medium, an analog signal is formed using a synthesis step. Here, the digital information is embedded in the weights. The receiver then performs an analysis of the obtained signal to extract the weights and with it the digital data. The principal objective is to design building blocks that are robust against disturbances present in transmission channels.

Within the past decade, mathematical contributions to these objectives had an tremendous impact on signal processing and communications engineering: wavelet bases were designed to analyze images (jpeg2000), and Gabor systems are currently used to transmit data through wired or wireless channels (OFDM). A wavelet basis consists of functions, which are all equal in shape but which are translated (shifted in time or space) or stretched copies of each other. The building blocks in Gabor theory on the other hand are functions, which are modulated (frequency-shifted) and translated (shifted in time or space) copies of each other.
In recent years, our research within the framework described above focused on time--frequency analysis of operators and Gabor analysis, and their applications in communications engineering. (For educational material, visit the website of the Summer Academy of the Jacobs University Bremen: Progress in Mathematics for Communication Systems.)

About us

Math News

TRR workshop on scale interactions, data-driven modeling, and uncertainty in weather and climate

The workshop on scale interactions, data-driven modeling, and uncertainty in weather and climate was jointly organized by the CRC 181 “Energy transfers in Atmosphere and Ocean” and W2W. It took place at the Mathematical Institute for Machine Learning and Data Science in Ingolstadt from 27-30 March 2023.

The workshop was attended by about 80 participants from both CRCs, as well as by international scientists from the US, Italy and the UK (ca. 50 in person and ca. 30-50 online from all over the world). The topics covered were: uncertainty quantification and predictability, parametrizations and structure-preserving and invariant-conserving schemes, data-driven modeling and machine learning, data assimilation, waves in atmosphere and ocean, as well as wave-vortex interactions. Guest speakers included Rosimar Rios-Berrios (NCAR), Ted Shepherd (Univ. Reading) and Michael Gil (ENS, UCLA). The Early Career Scientists were active participants, e.g., they chaired the sessions.

The poster session on the first evening was very lively and the different communities (weather, climate, mathematics, ocean science, atmospheric science) met and discussed common methods and challenges, in an attempt to link recent advances in these areas and present new developments in the underlying theories, methods, and parameterizations. The poster session took place in a historical building of Hohe Schule Ingolstadt which served as a main building from 1503 till 1800 of first University in Bavaria (later LMU).

In addition to the poster session, the participants had plenty of occasions to exchange about their results during coffee breaks, as well as during social events that included the conference dinner  and a visit of the medical museum. To those who are familier with the book from Mary Shelley will remember that Victor Frankenstein’s studied in Ingolstadt at University of Natural Sciences.

The slides and videos of the presentations are available here.

Childcare was organized during the meeting for two children of participants.

Text by Dr. Audine Laurian (LMU)

Mathematical Institute for Machine Learning and Data Science

[Translate to Englisch:] MIDS Logo

The Chair of Scientific Computing is part of the new founded Mathematical Institute for Machine Learning and Data Science, MIDS.
Learn more about MIDS here.