MIDS Logo

Herzlich Willkommen auf der Seite
der Professur für Datenassimilation

Um Unwetterereignisse oder das Abschmelzen des Eises in der Arktis vorhersagen zu können, müssen Informationen in Form von heterogenen Daten mit numerischen Modellen dynamischer Systeme verbunden werden. Dies geschieht durch die Datenassimilation, die es ermöglicht, Prozesse besser zu untersuchen und ihre weitere Entwicklung vorherzusagen.  Im Bereich der Datenassimilation beschäftigt sich die Professur mit der Fortentwicklung von Data Science Algorithmen durch die Einbeziehung von physikalischen Erhaltungsgesetzen und der Lösung entsprechend großer  Optimierungsprobleme in den Umweltwissenschaften.  Die Quantifizierung der Unsicherheiten von Vorhersagen, numerischen Modellen und Beobachtungen spielt hier ebenfalls eine zentrale Rolle. 

Über uns

Prof. Janjic stellt sich und den Lehrstuhl vor

Vorschaubild Tijana Janjic

Bitte beachten Sie: Durch Klicken auf die Bildfläche geben Sie Ihre Einwilligung, dass Videoinhalte von YouTube nachgeladen, Cookies von YouTube/Google auf Ihrem IT-System gespeichert und personenbezogene Daten wie Ihre IP-Adresse an Google weitergegeben werden. Klicken Sie nach Beendigung des Videoinhaltes auf ein anderes Video, öffnet sich in einem neuen Tab Ihres Browsers YouTube und erfasst weitere Daten von Ihnen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen und unter Google Privacy .

Neuigkeiten aus der Mathematik

Deutsche Mathematikervereinigung vergibt DMV Studierendenkonferenz 2026 an die KU

Stukon Logo
© DMV

Das Präsidium der Deutsche Mathematikervereinigung (DMV) beschloss, dass die Studierendenkonferenz (StuKon) 2026 von der KU am MIDS in Ingolstadt ausgetragen wird. „Die Mathematik an der KU Eichstätt-Ingolstadt freut sich sehr über die Vergabe, und noch mehr auf eine tolle Veranstaltung mit den besten Absolventen von Mathematikstudiengängen in Deutschland!“, kommentiert der Initiator Prof. Dr. Marcel Oliver.

Auf der Stukon bekommen Studierende und Absolvent*innen eines Mathematikstudiums (Bachelor, Diplom, Master oder Staatsexamen), die Möglichkeit, Ihre im Jahr zuvor angefertigten Abschlussarbeiten vorzustellen. Alle eingegangenen Bewerbungen werden von einer Fachjury bewertet und eine reihe von Ihnen bekommen dann die Möglichkeit, diese einem breiten Publikum vorzustellen. Es werden verschiedene Preise vergeben. Neben den Vorträgen der Absolvent*innen werden Fachvorträge von Wissenschaftler*innen, Institusführungen sowie Workshops zu Jobchancen angeboten.

Alle Informationen rund um die Stukon und die Anmeldemöglichkeiten finden Sie HIER.

Mathematisches Institut für Maschinelles Lernen und Data Science

Logo MIDS

Die Heisenberg Professur ist Teil des Mathematischen Instituts für Maschinelles Lernen und Data Science, kurz MIDS.
Finden Sie alle Informationen rund um das MIDS hier.