MIDS Logo

Herzlich Willkommen auf der Seite
der Professur für Datenassimilation

Um Unwetterereignisse oder das Abschmelzen des Eises in der Arktis vorhersagen zu können, müssen Informationen in Form von heterogenen Daten mit numerischen Modellen dynamischer Systeme verbunden werden. Dies geschieht durch die Datenassimilation, die es ermöglicht, Prozesse besser zu untersuchen und ihre weitere Entwicklung vorherzusagen.  Im Bereich der Datenassimilation beschäftigt sich die Professur mit der Fortentwicklung von Data Science Algorithmen durch die Einbeziehung von physikalischen Erhaltungsgesetzen und der Lösung entsprechend großer  Optimierungsprobleme in den Umweltwissenschaften.  Die Quantifizierung der Unsicherheiten von Vorhersagen, numerischen Modellen und Beobachtungen spielt hier ebenfalls eine zentrale Rolle. 

Über uns

Prof. Janjic stellt sich und den Lehrstuhl vor

Vorschaubild Tijana Janjic

Bitte beachten Sie: Durch Klicken auf die Bildfläche geben Sie Ihre Einwilligung, dass Videoinhalte von YouTube nachgeladen, Cookies von YouTube/Google auf Ihrem IT-System gespeichert und personenbezogene Daten wie Ihre IP-Adresse an Google weitergegeben werden. Klicken Sie nach Beendigung des Videoinhaltes auf ein anderes Video, öffnet sich in einem neuen Tab Ihres Browsers YouTube und erfasst weitere Daten von Ihnen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen und unter Google Privacy .

Neuigkeiten aus der Mathematik

Vortrag über den Einsatz von KI bei Rufbussen

die Ausstellung "I AM AI", die aktuell im Georgianum zu sehen ist, soll durch interaktive Experimente, Bilder und Videos das Thema künstliche Intelligenz einem breiten Publikum zugänglich machen.

Im Rahmen dieser Ausstellung veranstaltet das Mathematische Institut für Maschinelles Lernen und Data Science (MIDS) regelmäßige Vorträge.
Den Anfang dieser Vortragsreihe mache Prof. Pirmin Fontaine. Bei seinem Vortrag "Effizienzsteigerung von Rufbussystemen auf dem Land durch Maschinelles Lernen am Beispiel des VGI-Flexis" erklärt er, wie Künstliche Intelligenz den Einsatz von Rufbussen optimieren kann.

Prof. Fontaine ist Mitglied des MIDS und gemeinsam mit seinem Forschungsteam arbeitet er an der Entwicklung von Lösungsverfahren für Problemstellungen aus den Bereichen Mobilität, Supply Chain Management, Produktion und Logistik. 

Der Vortrag von Prof. Fontaine findet am 14.03.2024 um 18:00 Uhr im Seminarraum 101 (1. Stock des Georgianums, oberhalb der Ausstellung) statt. Die Teilnahme ist kostenlos.

Mathematisches Institut für Maschinelles Lernen und Data Science

Logo MIDS

Die Heisenberg Professur ist Teil des Mathematischen Instituts für Maschinelles Lernen und Data Science, kurz MIDS.
Finden Sie alle Informationen rund um das MIDS hier.