Der Lehrstuhl "Reliable Machine Learning" erforscht die Eigenschaften von Machine Learning Algorithmen. Angesichts des Erfolgs von Deep LearningMethoden in Anwendungen wie Bilderkennung, Spracherkennung und automatischer Übersetzung sind vor allem die Eigenschaften von Neuronalen Netzen von Interesse.
Auch wenn ein trainiertes neuronales Netz z.B. bei der Bilderkennung auf realen Daten sehr gute Ergebnisse liefert, wurde empirisch wiederholt eine Anfälligkeit für sogenannte "adversarial examples" festgestellt: Eine minimale (für den Menschen nicht wahrnehmbare) Änderung der Eingabedaten kann das neuronale Netz dazu bringen, eine falsche Ausgabe zu liefern.
Ein wichtiges Forschungsthema des Lehrstuhls ist deshalb, die Gründe für die Existenz solcher adversarial examples (also für die Instabilität von trainierten neuronalen Netzen) mathematisch zu verstehen, um aufbauend auf diesem Verständnis Methoden zu entwickeln, die beweisbar robuste neuronale Netze produzieren.
Prof. Voigtlaender stellt sich und den Lehrstuhl vor
Bitte beachten Sie: Durch Klicken auf die Bildfläche geben Sie Ihre Einwilligung, dass Videoinhalte von YouTube nachgeladen, Cookies von YouTube/Google auf Ihrem IT-System gespeichert und personenbezogene Daten wie Ihre IP-Adresse an Google weitergegeben werden. Klicken Sie nach Beendigung des Videoinhaltes auf ein anderes Video, öffnet sich in einem neuen Tab Ihres Browsers YouTube und erfasst weitere Daten von Ihnen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen und unter
Google Privacy
.
Special collection on the topic atmosphere and ocean sciences
Prof. Tijana Janjic, Heisenberg Professorship for Data Assimilation is a lead editor for "Combined machine learning and data assimilation for the atmosphere and ocean sciences", a special collection of Quarterly Journal of the Royal Meteorological Society.
Prof. Janjic, who is also a member of MIDS, devotes her research to important areas of climate research. Some of her findings have now been published in a special issue:
"Atmosphere and ocean phenomena are governed by physical laws, span wide range of spatial and temporal scales, and are observed with a variety of instruments providing noisy, incomplete, and non-uniform in space and time data. Often of interest in environmental prediction are forecasts of rare and high impact events, while we strive in predicting the current state of the Earth system and its evolution."
Mathematisches Institut für Maschinelles Lernen und Data Science
Der Lehrstuhl für Reliable Machine Learning ist Teil des Mathematischen Instituts für Maschinelles Lernen und Data Science, kurz MIDS. Finden Sie alle Informationen rund um das MIDS hier.