MIDS LOGO

Herzlich Willkommen auf der Seite des Lehrstuhls für Wissenschaftliches Rechnen

Die Arbeitsgruppe Wissenschaftliches Rechnen arbeitet an der Entwicklung und Untersuchung von Verfahren in der Data Science, insbesondere solchen basierend auf angewandter Harmonischen Analysis und der Funktionalanalysis. Fokusthemen inkludieren Signalverarbeitung, Informationstheorie, Abtasttheorie, Zeit-Frequenz Analyse, Quanitisierung und Maschinelles Lernen.

Die Arbeitsgruppe entwickelt zum Beispiel  effizienter Methoden zum Zusammensetzen (Synthetisieren) oder Zerlegen (Analysieren) von Funktionen oder Operatoren in gut verstandene Grundbausteine. Die Analyse bedarf die anwendungsabhängige Wahl der Grundbausteine und auf der stabilen Bestimmung des Gewichts jedes Bausteins in einem gegebenen Signal. Zum Beispiel kann ein Bild in rote, grüne und blaue Bereiche unterschiedlicher Intensität zerlegt werden. Die duale Operation ist die Synthese von Signalen. Mit denselben Bausteinen wie im Analyseschritt können wir Signale und Transformationen komponieren, oder hilfreich modifizierten Koeffizienten aus dem Analyseschritt nutzen um Signale zu rekonstruieren. In Bezug auf oben genanntes Beispiel, können wir ein Bild zeichnen, indem wir die Rot-, Grün- und Blaufelder und deren Intensitäten, d.h., deren Koeffizienten frei wählen.

Über uns

Neuigkeiten aus der Mathematik

German Chapter of the InterPore

This year the meeting of the German Chapter of the InterPore was held at KU Eichstätt-Ingolstadt on September 13-14, 2023. The meeting was organized at the Mathematical Institute for Machine Learning and Data Science (MIDS) by the chair of Geomatics and Geomathematics.
Around 30 researchers, PhD students, and professors participated in the two-day meeting. In addition to the two invited talks (see below), a total of 20 presentations were given on a wide range of research areas in the field of porous media ranging from experiment to theory and from science to industrial application.
During the coffee breaks and the dinner there were opportunities for exchanging ideas and deeper discussions.

The two invited speakers and their presentations are listed below:

  • Carina Bringedal (Western Norway University of Applied Sciences): Analysis and simulations of evaporation-driven density instabilities in porous media
  • Sergey Oladyshkin (University of Stuttgart, Institute for Water and Environmental Systems Modeling): Physics-Aware Neural Networks for uncovering unknown processes and leveraging the significance of Homogeneous Chaos Theory for learning
Meeting organizers

Mathematisches Institut für Maschinelles Lernen und Data Science

MIDS Logo

Der Lehrstuhl für Wissenschaftliches Rechnen ist Teil des neu gegründeten Mathematischen Instituts für Maschinelles Lernen und Data Science, kurz MIDS.
Finden Sie alle Informationen rund um das MIDS hier.

Eröffnung des MIDS

Vorschau Eröffnung MIDS

Bitte beachten Sie: Durch Klicken auf die Bildfläche geben Sie Ihre Einwilligung, dass Videoinhalte von YouTube nachgeladen, Cookies von YouTube/Google auf Ihrem IT-System gespeichert und personenbezogene Daten wie Ihre IP-Adresse an Google weitergegeben werden. Klicken Sie nach Beendigung des Videoinhaltes auf ein anderes Video, öffnet sich in einem neuen Tab Ihres Browsers YouTube und erfasst weitere Daten von Ihnen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen und unter Google Privacy .