MIDS LOGO

Herzlich Willkommen auf der Seite des Lehrstuhls für Wissenschaftliches Rechnen

Die Arbeitsgruppe Wissenschaftliches Rechnen arbeitet an der Entwicklung und Untersuchung von Verfahren in der Data Science, insbesondere solchen basierend auf angewandter Harmonischen Analysis und der Funktionalanalysis. Fokusthemen inkludieren Signalverarbeitung, Informationstheorie, Abtasttheorie, Zeit-Frequenz Analyse, Quanitisierung und Maschinelles Lernen.

Die Arbeitsgruppe entwickelt zum Beispiel  effizienter Methoden zum Zusammensetzen (Synthetisieren) oder Zerlegen (Analysieren) von Funktionen oder Operatoren in gut verstandene Grundbausteine. Die Analyse bedarf die anwendungsabhängige Wahl der Grundbausteine und auf der stabilen Bestimmung des Gewichts jedes Bausteins in einem gegebenen Signal. Zum Beispiel kann ein Bild in rote, grüne und blaue Bereiche unterschiedlicher Intensität zerlegt werden. Die duale Operation ist die Synthese von Signalen. Mit denselben Bausteinen wie im Analyseschritt können wir Signale und Transformationen komponieren, oder hilfreich modifizierten Koeffizienten aus dem Analyseschritt nutzen um Signale zu rekonstruieren. In Bezug auf oben genanntes Beispiel, können wir ein Bild zeichnen, indem wir die Rot-, Grün- und Blaufelder und deren Intensitäten, d.h., deren Koeffizienten frei wählen.

Über uns

Neuigkeiten aus der Mathematik

Workshop "Machine Learning in Geophysical Modeling"

On behalf of Prof. Dr. Tijana Janjic, Prof. Dr. Marcel Oliver, and Prof. Dr. Nadja Ray  the “Machine Learning in Geophysical Modeling” workshop took place in the historic Speinshart Monastery in September 2025, hosted by the Speinshart Scientific Centre for AI and SuperTech (SSC).

The SSC, funded by the Bavarian State Ministry of Science and the Arts and supported by the Association of Bavarian Universities and Universities of applied sciences, provides a unique retreat concept setting for in-depth scientific exchange.

This workshop brought together researchers in machine learning with applications in geophysical sciences and geophysical scientists using machine learning in their work. Topics include:

  • Machine learning in geophysical modeling
  • Uncertainty quantification
  • Data assimilation and bias analysis
  • Explainable AI in the context of geophysics

Mathematisches Institut für Maschinelles Lernen und Data Science

MIDS Logo

Der Lehrstuhl für Wissenschaftliches Rechnen ist Teil des neu gegründeten Mathematischen Instituts für Maschinelles Lernen und Data Science, kurz MIDS.
Finden Sie alle Informationen rund um das MIDS hier.

Eröffnung des MIDS

Vorschau Eröffnung MIDS

Bitte beachten Sie: Durch Klicken auf die Bildfläche geben Sie Ihre Einwilligung, dass Videoinhalte von YouTube nachgeladen, Cookies von YouTube/Google auf Ihrem IT-System gespeichert und personenbezogene Daten wie Ihre IP-Adresse an Google weitergegeben werden. Klicken Sie nach Beendigung des Videoinhaltes auf ein anderes Video, öffnet sich in einem neuen Tab Ihres Browsers YouTube und erfasst weitere Daten von Ihnen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen und unter Google Privacy .