Aktuelles | Der Studiengang | Materialien zum Studium | Info & Beratung | Ansprechpersonen | Studentische Organisationen | Das MIDS
Der Studiengang Data Science vermittelt die Grundlagen des maschinellen Lernens und anderer aktueller Verfahren zur Datenanalyse, sowie die Fähigkeit, diese Verfahren mit modernen Softwaretechnologien effizient umzusetzen.
Dabei werden Kenntnisse aus den Studienbereichen Mathematik, Statistik, Informatik und Data Science gelehrt.
Im weiteren Verlauf des Studiums können Sie eine von sechs Spezialisierungen auswählen und damit gezielt den Anwendungsbereich studieren, der zu Ihren Berufszielen passt.
„Applied Mathematics and Scientific Computing“ ermöglicht Studierenden einen tieferen Einblick in die mathematischen Grundlagen der Data Science. Schwerpunkte der Spezialisierung sind einerseits die mathematische Modellbildung, andererseits der Übergang von kontinuierlichen zu diskreten und damit praktisch implementierbaren Modellen.
„Business Analytics and Operations“ schlägt die Brücke zu den Wirtschaftswissenschaften. Neben Grundkenntnissen der Betriebswirtschaftslehre, z.B. im Rechnungswesen, liegt der Schwerpunkt dieser Spezialisierung in datengesteuerten Lösungsansätzen zu betriebswirtschaftlichen, organisatorischen und technischen Problemstellungen.
„Digital Transformation of Society“ betrachtet Anwendungen der Data Science in den Sozial- und Humanwissenschaften. Neben Grundlagenwissen erhalten Studierende Einblicke in die Rolle empirischer Methoden, z.B. in Soziologie und Journalistik. Die substantielle Kenntnis von Methoden der Data Science gepaart mit Einblicken in die Sozial- und Humanwissenschaften ermöglicht den Studierenden eine kritische Auseinandersetzung mit dem fortschreitenden digitalen Wandel der Gesellschaft.
„Environmental Sciences“ ermöglicht den Studierenden einen Einblick in die datenbasierten Umwelt- und Geowissenschaften. Ein zentraler Aspekt ist das Anpassen von Modellen für dynamische (zeitlich veränderliche) Prozesse wie Wetter und Klima an Messdaten, die oft nur ungenau und unvollständig vorliegen.
„Finance and Economics“ beleuchtet makroökonomische Zusammenhänge, globale Märkte und Finanzinstrumente. Diese Gebiete sind stark von datenbasierten Methoden geprägt. Die Spezialisierung erweitert die Methodenkompetenz der Studierenden um Kenntnisse in der gebietsspezifischen Modellbildung und Fachsystematik.
„Machine Learning and Statistics“ ermöglicht Studierenden eine Vertiefung ihres Verständnisses für statistische Methoden und führt in fortgeschrittene und forschungsnahe Aspekte der statistischen und maschinellen Lernverfahren ein.
Das für das jeweilige Semester gültige Modulhandbuch zum Studiengang finden Sie hier auf KU.Campus. Gehen Sie dort in der Navigation auf "Informationsportal --> Studiengänge". Geben Sie Ihren Studiengang und das betreffende Semester in der Suchmaske ein. In der Ergebnisliste erscheint oben rechts das Modulhandbuch zum Download als pdf- oder Word-Datei.
Studiengangsbeschreibung für den Bachelorstudiengang Data Science
Exemplarische Studienverlaufspläne für verschiedene Studienprofile im Bachelorstudiengang Data Science
Wahlpflichtkatalog für den Bachelorstudiengang Data Science
Während des Studiums ist ein Industriepraktikum oder ein Forschungspraktikum am Mathematischen Institut für Maschinelles Lernen und Data Science oder in anderen Fachgebieten der KU oder anderer Hochschulen vorgesehen.
Partner des Studiengangs für ein Industriepraktikum sind unter anderem:
Gerne können Sie die am Studiengang beteiligten Professorinnen und Professoren direkt kontaktieren:
Die Fachschaft Data Science wurde neu gegründet. In Kürze erhalten Sie mehr Informationen.
Sie können die Fachschaft aktuell bereits über fg-data-science(at)ku.de erreichen.
Der BSc Studiengang Data Science ist Teil des neuen Mathematischen Instituts für Maschinelles Lernen und Data Science, das an der KU gegründet wurde.
Erfahren Sie HIER mehr über das MIDS.
Notwendige Cookies stellen Grundfunktionen unserer Webseite zur Verfügung. Ohne diese Cookies können Sie z.B. keine Shopfunktionen oder Logins nutzen. Die Webseite wird also ohne diese Cookies nicht richtig funktionieren.
Name | Hosts | Beschreibung | Ablauf | Typ |
---|---|---|---|---|
fe_typo_user | TYPO3 |
Dieses Cookie ist ein Standard-Session-Cookie von TYPO3. Es speichert im Falle eines Benutzer-Logins die Session-ID. So kann der eingeloggte Benutzer wiedererkannt werden und es wird ihm Zugang zu geschützten Bereichen gewährt. |
||
be_typo_user | TYPO3 |
Dieses Cookie ist ein Standard-Session-Cookie von TYPO3. Es speichert im Falle eines Backend-Logins die Session-ID. |
||
dv_t3_consent_management | TYPO3 |
Speichert Ihre Cookie- und Trackingeinstellungen. Wenn Sie diesen Cookie löschen, müssen Sie die Einstellungen erneut vornehmen. |
1 Jahr | HTTP |
Statistik-Cookies helfen uns zu sehen, wie Besucher unsere Seiten nutzen. Diese Informationen werden anonym gesammelt.
Name | Hosts | Beschreibung | Ablauf | Typ |
---|---|---|---|---|
Matomo |